
OpenGeist: Insight in the Stream of
Page Views on Wikipedia

Maria-Hendrike Peetz
ISLA, University of Amsterdam

M.H.Peetz@uva.nl

Edgar Meij
ISLA, University of Amsterdam

edgar.meij@uva.nl

Maarten de Rijke
ISLA, University of Amsterdam

derijke@uva.nl

ABSTRACT
We present a RESTful interface that captures insights into the zeit-
geist of Wikipedia users. The system is an interface for clustering
and comparing concepts based on the time series of the number of
views of their Wikipedia page. The functionality is motivated by
three use cases, ranging from technical novices to expert users and
we also provide two real-life example applications.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.4 Systems and
Software;H.3.5 Online Information Services

General Terms
API, Time Series Analysis, Wikipedia

1. INTRODUCTION
In recent years many so-called zeitgeist applications have been

launched. Such applications are used to gain insights into the cur-
rent gist of society and actual affairs. Several news sources run
zeitgeist applications for popular and trending news.1 In addition,
there are zeitgeist applications that report on trending publications
such as LibraryThing,2 and trending topics, such as Google Zeit-
geist.3 In web dynamics, users’ visitation and search patterns were
modeled [1, 6].

Most zeitgeist tools are based on proprietary data and it is there-
fore often impossible to see beyond the limited amount of informa-
tion shown by the tools. For many scenarios, though, it would be
useful to be able to gain insights in people’s interests. Three ex-
amples of time-aware information access scenarios in which such a
need arises naturally are described below.
Data mining expert. A data mining expert wants to do experi-
ments based on the popularity of Wikipedia concepts over time.
1For example, the The Japan Times runs a feature titled “The Zeit
Gist” every Tuesday, which covers community issues particularly
relevant to the foreign community within Japan.
2http://www.librarything.com/zeitgeist
3http://www.google.com/intl/en/press/zeitgeist2010/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

He is a financial analyst and would like to know if there are cor-
relations between stock market rates and the general interest for a
company. As a financial analyst, he has his own time series anal-
ysis tools for financial data, but misses temporal data that captures
“general interest” and needs access to the raw data of a few (ă20)
Wikipedia concepts, including the company and its products.

Brand analyst. A brand expert would like to analyze the current
interest, i.e., zeitgeist, regarding her brand. She is interested in her
own brand, but also other brands, related to hers. But what does
related mean? For her, this means brands that share trends, bursts,
and recurring events. She would like to have the results presented
visually, in a graph, but also be able to create her own statistics
based on machine readable results.

Wikipedia moderator. Wikipedia has moderators, responsible for
the evaluation and monitoring of a certain set of articles. They
are interested in how many times an article is viewed, in order to
distribute valuable and sparse volunteer work to articles of interest.
The moderator asks if a certain article receives more interest than
it used to. He is interested if one article in a collection of articles
(a category) experiences sudden interest, or cluster articles with
similar trends of interests into groups. He is not interested in the
full set of page view counts per concept, but a subset of similar
concepts. He is not interested in raw data, but a bird’s eye view that
reveals trends.

There is an interesting open data source from which a stream of
people’s changing interests can be observed across a very broad
spectrum of areas: the Wikimedia access logs.4 The logs contain
the number of requests made to any Wikimedia domain, sorted by
subdomain and aggregated on an hourly basis. Since they are a
log of the actual requests, they are noisy and can also contain non-
existing web pages. They are also quite large, yielding 60 GB worth
of compressed textual data per month. Currently, we update the
data on a daily basis and filter the raw source data by matching the
URLs of all English Wikipedia articles and their redirects.

In the remainder of this paper we describe an API that facilitates
easy access to the access logs. The API works as an interface for
three types of user, the data mining expert, a brand analyst, and a
Wikipedia moderator, as described above. From these use cases we
have identified the following requirements our system should have:

‚ The user must have access to the raw time series data for a
concept.

‚ The user must be able to find the N most temporally similar
concepts.

‚ The user must be able to group concepts and their data, based
4http://dumps.wikimedia.org/other/pagecounts-raw/

http://www.librarything.com/zeitgeist
http://www.google.com/intl/en/press/zeitgeist2010/
http://dumps.wikimedia.org/other/pagecounts-raw/

http://opengeist.org/{begindate}/{enddate}
{resolution}/{filter}

[/category/{id}
[/raw]
[/topN[/compare/*{filter_graph}]
[/cluster[/k/*{filter_graph}]]

]
[/statistics]

]
[/concept/{id}

[/raw]
[/topN

[/cluster[/k/*{filter_graph}]]
[/compare/*{filter_graph}]

]
[/statistics]

]
[/statistics]

Figure 1: Syntax of the GET commands for the RESTful webser-
vice of OpenGeist: terms in {} are variables and if marked with *
they are optional.

either on the categorial system of Wikipedia or on similarity
between concepts.

‚ The system must return either a textual or a visual represen-
tation.

‚ The user should be able to apply time series filters to extract
trends and (recurring) events.

We are aware of several existing solutions to accessing the Wiki-
pedia page view information. Ciglan and Nørvåg [2] present a rec-
ommender system for new and popular articles, based on favorited
Wikipedia articles and page views. There are two systems that dis-
play statistics about Wikipedia pages: Wikistics5 shows top viewed
articles and search terms, as well as time charts for 2009, and the
Wikipedia user aka provides a tool for monthly edit statistics. Both
tools lack a REST interface and means to find pages with similar
page view or edit history.6 The Wikipedia user Henrik provides a
REST interface7 to access the raw time series data but no filtering
or comparative graphs of similar pages.

In the remainder of the paper, we describe a REST interface that
provides the raw data for a concept as well as different approaches
to data aggregation methods (Section 2). In Section 3 we give two
example applications and we end with a concluding section.

2. API
In this section we describe an API for a RESTful webservice [3,

chap. 5] that allows users to retrieve the Wikipedia access logs data
in either raw, aggregated, or filtered form. It allows users to clus-
ter different concepts according to user interest or look at different
aggregations of the data.

Figure 1 describes the full syntax of the GET requests that define
the API. The API is safe, as we provide only GET methods. The
id is a uniform resource identifier, but is different from the URI
as used for Wikipedia concepts: instead of the full URI we use
the title of a page. We distinguish between concept and category,
where a concept can be a member of a category. A category itself
can be a concept and therefore a member of a (different) category.

5http://wikistics.falsikon.de/long/wikipedia/en/
6http://vs.aka-online.de/cgi-bin/wppagehiststat.pl
7http://stats.grok.se/about

To avoid cycles, we say that a concept is only a member of its
immediate parent category. Requesting a category as category page
implies the need for aggregation, while requesting it as a concept
entails that the user wants information about the page itself. The
use of Wikipedia titles is natural as it forms a direct link to the
DBpedia knowledge graph and therefore to linking open data. For
every request we provide two representations: (i) in json format for
further processing and with metadata and (ii) in image format (png)
for viewing in a browser. The latter is requested by adding .png at
the end of the GET request.

The temporal resolution of the time series and filter are to be set
optional, the default resolution is a day and the data is by default
unfiltered. The final, also optionally, filter argument, filter_graph is
for the visual representation: if a filter is set, the time series for the
visual representation is preprocessed based on this filter, otherwise
it plots the raw data. A time series as the API returns it, is the
number of page views per time unit. A time unit can be a day,
week, or a month.

The remainder of this section we give examples of GET requests
based on the use cases introduced in Section 1. In Section 2.1 we
describe the basic retrieval of time series, and in Section 2.2 how
to get general collection statistics. Section 2.3 describes how data
can be grouped.

Figure 2: The four concepts closest to BMW using the burst.

2.1 Raw series
For people with expert knowledge the raw data is desirable. The

user needs to be able to directly access the interface and retrieve
page views per day directly without filtering. For example, the
expert would like to get the time series for the company BMW, the
call of the API would be:

http://opengeist.org/20110101/20111231/concept/BMW/raw.

The result is the raw data in json format:

{ ’id’:’BMW’,
’timeseries’: {’2011-01-01’:12, ... , ’2011-12-31’: 20}}.

This object contains the id and a time series object. This interaction
is similar to the interface provided by http://stats.grok.se/.
Following the earlier mentioned design principles, the request

http://opengeist.org/20110101/20111231/concept/BMW/raw.png

returns the time series as a png, and the request

http://opengeist.org/20110101/20111231/category
/German_brands/raw

returns all concept objects with time series of the concepts in the
category of German brands:

{’category’:’German_brands’,
’concepts’:

{’id’:’BMW’,
’timeseries’: {’2011-01-01’:12,...,’2011-12-31’: 20}}...}.

The visual representation is a comparative plot of the page views
per day.

http://wikistics.falsikon.de/long/wikipedia/en/
http://vs.aka-online.de/cgi-bin/wppagehiststat.pl
http://stats.grok.se/about
http://stats.grok.se/

2.2 Statistics
The brand analyst is preparing a report for the public relations

team of BMW. In order to report the knowledge and interest of
users concerning the brand, she requests

http://opengeist.org/20110101/20111231/concept/BMW/statistics

which will return a json file with the mean, standard deviation,
maximum, and minimum of the page views.

Similarly, the Wikipedia moderator, trying to assess the impor-
tance of his work, requests the statistics for a category with
http://opengeist.org/20110101/20111231/category
/German_Brands/statistics.

This returns the aggregated statistics of all concepts in the category
as well as a statistics object for each concept.

The global collection statistics can be accessed with

http://opengeist.org/20110101/20111231/statistics.

This shows number of pages, categories and overall views per day.

2.3 Grouping
The brand analyst needs to compare time series of concepts. For

that, we provide an interface that allows the user to select the most
similar concepts, but also cluster similar concepts and return typical
concepts (prototypes) of the cluster.

An example request that returns similar concepts is
http://opengeist.org/20110101/20111231/month/trends
/concept/BMW/3/compare.

Here, trends is the filter (see below) and the request returns the
three concepts with the most similar time series:

{’id’:’BMW’,
’timeseries’: {’2011-01’:80, ... , ’2011-12’: 20},
’timeseries_filtered’: {’2011-01’:60, ... , ’2011-12’: 15},
’similar_concepts’: [
{ ’id’:’Racing_Bart_Mampaey’,
’timeseries’: {’2011-01’:40, ... , ’2011-12’: 30},
’timeseries_filtered’: {’2011-01’:60, ... , ’2011-12’: 34},
’distance’ = 34.49 },

{ ’id’:’History_of_BMW_motorcycles’, ... }...] }

using the canberra distance metric [4].
The filter indicates in which respect the time series are similar:

it preprocesses the time series and extracts information relevant for
the specific task. It can request a moving average filter using ei-
ther trends or moving_average, it can request significantly dif-
ferent viewing patters using burst, or it can request regular pat-
terns with either recurring or fourier. Using the filter trends
or moving_average applies a moving average linear filter, with a
window size of 10. It eliminates regular patterns (e.g. more views
on weekends) and keeps track of a general trend of the distribution.
The filter burst sets all days with page view counts bigger than
two standard deviations of the mean with two, proceeds similarly
for one standard deviation, and sets the rest to zero. This identi-
fies months with a high number of accesses, and disrespects trends
and regular patterns. The filter recurring and fourier is the su-
perposition of the dominant fourier curves of the time series. This
filter emphasizes regular events and patterns in the views of Wiki-
pedia pages. The visual representation will be a graph overlaying
the topN (here three) similar curves. Figure 2 is the result of the
call:

http://opengeist.org/20110101/20111231/month/burst
/concept/BMW/4/compare/burst.png

where the similarity is calculated based on the burst filter and the
visual representation are the burst-filtered time series.

2.3.1 Clustering of concepts
For the brand analyst, the most similar brands are interesting to

be compared with either direct competitors or related brands. Clus-
tering concepts similar to a concept into groups allows the analyst
to identify sources of temporal similarity.

A request for concept clusters with similar time series for the
brand BMW is
http://opengeist.org/20110101/20110630/bursts/concept
/BMW/20/cluster/4.

The system returns the four prototypes of the cluster, the cluster
assignments and statistics:
{’id’:’BMW’,
’timeseries’:

{’2011-01-01’:12, ... , ’2011-12-31’: 20},
’timeseries_filtered’:

{’2011-01-01’:1, ... , ’2011-06-30’: 2},
’clusters’:

[{’id’ : 1,
’prototype’ :
{’timeseries’:

{’2011-01-01’:0, ... , ’2011-06-30’: 2},
’distance’ : 30

},
’assignment’:[
{’id’:’BMW_1_Series’,

’timeseries’:
{’2011-01-01’:8, ... , ’2011-06-30’: 12},

’timeseries_filtered’:
{’2011-01-01’:0, ... , ’2011-06-30’: 2},

’distance’ = 2
}...] ...} ...] }.

The cluster algorithm used is k-means, with a cluster size k“ 4 (de-
fault k “ 5). The returned cluster statistics are the size, the width
and the variances of a cluster. Following the same design princi-
ples as the grouping, the clustering can be done on different filters
and uses the canberra distance matrix. If a visual representation
is requested, the system returns a comparative plot of the cluster
prototypes with an attached list of cluster assignments, sorted by
distance to the prototype. This allows the brand analyst to asso-
ciate similar brands with certain events. The visual representation
is in Figure 3.

2.3.2 Clustering of categories
The Wikipedia moderator wants to focus on articles that receive

increasingly more attention. Instead of looking at every single time
series of an article independently, he can cluster trends of articles
and select the cluster with a trend to more page views. His GET
request looks like
http://opengeist.org/20110101/20111231/day/trends/category
/German_brands/cluster.png.

The returned graph is similar to Figure 3, but based on the members
of the category German_Brands.

3. EXAMPLE APPLICATIONS
In this section we describe two applications that make use of the

Wikimedia access logs data.
Semantic Linking. Meij et al. [5] link tweets to Wikipedia con-
cepts. This linking enriches the microblog posts by providing a
contextualization of the information. Due to their unedited and
noisy nature, semantic enrichment enables many new applications,
ranging from retrieval to reputation monitoring. The authors use
a broad range of features in a machine learning context, includ-
ing those based on Wikimedia access logs (WIKISTATS and WIK-
ISTATSWK). WIKISTATS is the frequency with which the page was

Figure 3: The time series for the page views of the concept BMW in blue. Clustering the 20 closest concepts to BMW, results in four prototypical
time series in green, red, cyan and magenta.

visited in an entire year and WIKISTATSWK the frequency with
which it was visited in the seven days before the tweet was posted.
Instead of processing the entire dataset, the authors can now pro-
cess the features on demand by requesting the concept statistics
over the entire year,

http://opengeist.org/20100101/20101231/entity
/Judy_Dench/statistics

over the last week before a tweet was posted,

http://opengeist.org/20100620/20100627/entity
/Judy_Dench/statistics

and the general collection statistics for normalization:

http://opengeist.org/20100101/20101231/statistics.

Reputation monitoring system. The number of page views for an
entity are an indicator of its fame and general public interest. But
what drives a sudden interest for an entity? With our technology,
one can easily build a reputation management system that monitors
different aspects of an entity and links them to a textually richer
reflection of public interest: Twitter. The reputation management
system is a dashboard with a monitoring, an alerting, and an in-
forming component. The monitoring component shows page views
of pages related to the entity in question: as can be seen for the
example BMW, there is more than one Wikipedia page related to
BMW, all of them subtopics. If there is a sudden change of page
views for one of the subtopics, the alerting component warns the
user. If desired, the informing component shows tweets that are
about this subtopic.

The API helps with each of the aspects in the monitoring system.
It helps selecting temporally related concepts for an entity; for the
example entity BMW it can select Wikipedia pages similar to the
concepts in Figure 3. For the visualization and monitoring of the
entity, it returns a plot for the page views for every single entity.
If there are more page views than usual, the filter option bursts
filters such recent (and general) increases. Finally, the linking of
tweets to an article can be done using methods from Section 3.

4. CONCLUSION
We presented a RESTful web interface to request and retrieve

time series for Wikipedia concepts. The time series are based on
the logs of the access counts of the Wikipedia page of a concept.
This interface does not only return the raw time series, but also fil-
ters time series and clusters temporally similar concepts, returning
visual or textual objects. The requirements were created based on
three use cases, based on technical novices as well as an expert
and we showed how the API can suit their needs. For future work,

we intend to use this API for experiments and create dashboard
interfaces for different user bases. This will certainly result in an
expansion of the interface.
Acknowledgments. This research was partially supported by the
European Union’s ICT Policy Support Programme as part of the
Competitiveness and Innovation Framework Programme, CIP ICT-
PSP under grant agreement nr 250430, the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agree-
ments nr 258191 (PROMISE Network of Excellence) and 288024
(LiMoSINe project), the Netherlands Organisation for Scientific
Research (NWO) under project nrs 612.061.814, 612.061.815, 640.-
004.802, 380-70-011, 727.011.005, 612.001.116, the Center for
Creation, Content and Technology (CCCT), the Hyperlocal Service
Platform project funded by the Service Innovation & ICT program,
the WAHSP and BILAND projects funded by the CLARIN-nl pro-
gram, the Dutch national program COMMIT, and by the ESF Re-
search Network Program ELIAS.

5. REFERENCES

[1] S. Chien and N. Immorlica. Semantic similarity between
search engine queries using temporal correlation. In WWW
2005, 2005.

[2] M. Ciglan and K. Nørvåg. Wikipop: personalized event detec-
tion system based on wikipedia page view statistics. In CIKM
2010, 2010.

[3] R. T. Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of Cali-
fornia, Irvine, 2000.

[4] G. N. Lance and W. T. Williams. Mixed-Data Classificatory
Programs II - Divisive Systems. Australian Computer Journal,
1(2):82–85, 1968.

[5] E. Meij, W. Weerkamp, and M. de Rijke. Adding semantics to
microblog posts. In WSDM 2012, Seattle, 2012. ACM.

[6] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and
E. Horvitz. Modeling and predicting behavioral dynamics on
the web. In WWW 2012, 2012.

	1 Introduction
	2 API
	2.1 Raw series
	2.2 Statistics
	2.3 Grouping
	2.3.1 Clustering of concepts
	2.3.2 Clustering of categories

	3 Example Applications
	4 Conclusion
	5 References

