
Weakly-supervised Contextualization of Knowledge Graph Facts
Nikos Voskarides

∗

University of Amsterdam

Amsterdam, The Netherlands

n.voskarides@uva.nl

Edgar Meij

Bloomberg

London, U.K.

edgar.meij@acm.org

Ridho Reinanda

Bloomberg

London, U.K.

rreinanda@bloomberg.net

Abhinav Khaitan

Bloomberg

New York, U.S.

akhaitan10@bloomberg.net

Miles Osborne

Bloomberg

London, U.K.

mosborne29@bloomberg.net

Giorgio Stefanoni

Bloomberg

London, U.K.

gstefanoni1@bloomberg.net

Prabhanjan Kambadur

Bloomberg

New York, U.S.

pkambadur@bloomberg.net

Maarten de Rijke

University of Amsterdam

Amsterdam, The Netherlands

derijke@uva.nl

ABSTRACT
Knowledge graphs (KGs) model facts about the world; they consist

of nodes (entities such as companies and people) that are connected

by edges (relations such as founderOf). Facts encoded in KGs are

frequently used by search applications to augment result pages.

When presenting a KG fact to the user, providing other facts that

are pertinent to that main fact can enrich the user experience and

support exploratory information needs. KG fact contextualization is

the task of augmenting a given KG fact with additional and useful

KG facts. The task is challenging because of the large size of KGs;

discovering other relevant facts even in a small neighborhood of

the given fact results in an enormous amount of candidates.

We introduce a neural fact contextualization method (NFCM) to

address the KG fact contextualization task. NFCM first generates

a set of candidate facts in the neighborhood of a given fact and

then ranks the candidate facts using a supervised learning to rank

model. The ranking model combines features that we automatically

learn from data and that represent the query-candidate facts with

a set of hand-crafted features we devised or adjusted for this task.

In order to obtain the annotations required to train the learning

to rank model at scale, we generate training data automatically

using distant supervision on a large entity-tagged text corpus. We

show that ranking functions learned on this data are effective at

contextualizing KG facts. Evaluation using human assessors shows

that it significantly outperforms several competitive baselines.

CCS CONCEPTS
• Information systems → Presentation of retrieval results;

∗
This work was done while Nikos was an intern at Bloomberg.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5657-2/18/07. . . $15.00

https://doi.org/10.1145/3209978.3210031

Bill Gates Microsoft

Software

Programmer Paul Allen

1975-04

founderOf

i
n
d
u
s
t
r
y

dateFounded

fo
u
n
d
e
r
O
f

profession

profession

Figure 1: A Freebase subgraph that consists of relevant facts
to the query fact founderOf (Bill Gates,Microsoft).

KEYWORDS
Knowledge graphs, Fact contextualization, Distant supervision

ACM Reference format:
Nikos Voskarides, Edgar Meij, Ridho Reinanda, Abhinav Khaitan, Miles

Osborne, Giorgio Stefanoni, Prabhanjan Kambadur, and Maarten de Rijke.

2018. Weakly-supervised Contextualization of Knowledge Graph Facts. In

Proceedings of The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, Ann Arbor, MI, USA, July 8–12, 2018
(SIGIR ’18), 10 pages.
https://doi.org/10.1145/3209978.3210031

1 INTRODUCTION
Knowledge graphs (KGs) have become essential for applications

such as search, query understanding, recommendation and question

answering because they provide a unified view of real-world entities

and the facts (i.e., relationships) that hold between them [6, 7, 22, 34].

For example, KGs are increasingly being used to provide direct an-

swers to user queries [34], or to construct so-called entity cards that
provide useful information about the entity identified in the query.

Recent work [10, 17] suggests that search engine users find entity

cards useful and engage with them when they contain information

that is relevant to their search task, for instance in the form of a set

of recommended entities and facts that are related to the query [6].

Previous work has focused on augmenting entity cards with facts

that are centered around, i.e., one-hop away from, the main entity

of the query [17].

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

765

https://doi.org/10.1145/3209978.3210031
https://doi.org/10.1145/3209978.3210031

However, oftentimes a user is interested in KG facts that by defi-

nition involve more than one entity (e.g., “Who founded Microsoft?”

−→ “Bill Gates”). In such cases, we can exploit the richness of the

KG by providing query-specific additional facts that increase the

user’s understanding of the fact as a whole, and that are not neces-

sarily centered around only one of the entities. Additional relevant

facts for the running example would include Bill Gates’ profession,

Microsoft’s founding date, its main industry and its co-founder

Paul Allen (see Figure 1). In this case, Bill Gates’ personal life is less

relevant to the fact that he founded Microsoft.

Query-specific relevant facts can also be used in other appli-

cations to enrich the user experience. For instance, they can be

used to increase the utility of KG question answering (QA) systems

that currently only return a single fact as an answer to a natural

language question [5, 34]. Beyond QA, systems that focus on auto-

matically generating natural language from KG facts [15, 20] would

also benefit from query-specific relevant facts, which can make the

generated text more natural and human-like. This becomes even

more important for KG facts that involve tail entities, for which

natural language text might not exist for training [32].

In this paper, we address the task of KG fact contextualization,
that is, given a KG fact that consists of two entities and a relation

that connects them, retrieve additional facts from the KG that are

relevant to that fact. This task is analogous to ad-hoc retrieval: (i)

the “query” is a KG fact, (ii) the “documents” are other facts in

the KG that are in the neighborhood of the “query”. We propose a

neural fact contextualization method (NFCM), a method that first

generates a set of candidate facts that are part of {1,2}-hop paths

from the entities of the main fact. NFCM then ranks the candidate

facts by how relevant they are for contextualizing the main fact.

We estimate our learning to rank model using supervised data. The

ranking model combines (i) features we automatically learn from

data and (ii) those that represent the query-candidate facts with a

set of hand-crafted features we devised or adjusted for this task. Due

to the size and heterogeneous nature of KGs, i.e., the large number

of entities and relationship types, we turn to distant supervision to

gather training data. Using another, human-verified test collection

we gauge the performance of our proposed method and compare it

with several baselines. We sum up our contributions as follows.

• We introduce the task of KG fact contextualization where

the goal is to, given a fact that consists of two entities and a

relationship that connects them, rank other facts from a KG

that are relevant to that fact.

• We propose NFCM, a method to solve KG fact contextual-

ization using distant supervision and learning to rank. Our

results show that: (i) distant supervision is an effective means

for gathering training data for this task and (ii) a neural learn-

ing to rank model that is trained end-to-end outperforms

several baselines on a human-curated evaluation set.

• We provide a detailed result analysis and insights into the

nature of our task.

The remainder of the paper is organized as follows. We first pro-

vide a definition of our task in Section 2 and then introduce our

method in Section 3. We describe our experimental setup and detail

our results and analyses in Sections 4 and 5, respectively. We con-

clude with an overview of related work and an outlook on future

directions.

Barack

Obama

M1
Michelle

Obama

1992-10Hawaii

spouse spouse

m
a
r
r
ia
g
e
D
a
te

b
o
r
n
In

Figure 2: KG subgraph that consists of
three facts: bornIn⟨Barack Obama,Hawaii⟩,
spouseOf ⟨Barack Obama,Michelle Obama⟩ and
marriageDate⟨M1, 1992-10⟩. M1 is a CVT entity. Note that the
third fact is an attribute of the second fact.

2 PROBLEM STATEMENT
In this section we provide background definitions and formally

define the task of KG fact contextualization.

2.1 Preliminaries
Let E = En ∪ Ec be a set of entities, where En and Ec are disjoint
sets of non-CVT and CVT entities, respectively.

1
Furthermore, let P

be a set of predicates. A knowledge graph K is a set of triples ⟨s,p,o⟩,
where s,o ∈ E and p ∈ P . By viewing each triple in K as a labelled

directed edge, we can interpret K as a labelled directed graph. We

use Freebase as our knowledge graph [8, 24].

A path in K is a non-empty sequence ⟨s0,p0, t0⟩, . . . , ⟨sm ,pm , tm⟩
of triples from K such that ti = si+1 for each i ∈ 0,m − 1.

We define a fact as a path in K that either: (i) consists of 1 triple,

s0 ∈ E and t0 ∈ En (i.e., s0 may be a CVT entity), or (ii) consists of

2 triples, s0, t1 ∈ En and t0 = s1 ∈ Ec (i.e., t0 = s1 must be a CVT

entity). A fact of type (i) can be an attribute of a fact of type (ii), iff

they have a common CVT entity (see Figure 2 for an example).

Let R be a set of relationships where a relationship r ∈ R is a label

for a set of facts that share the same predicates but differ in at least

one entity. For example, spouseOf is the label of the fact depicted in

the top part of Figure 2 and consists of two triples. Our definition of

a relationship corresponds to direct relationships between entities,

i.e., one-hop paths or two-hop paths through a CVT entity. For the

remainder of this paper, we refer to a specific fact f as r ⟨s, t⟩, where
r ∈ R and s, t ∈ E.

2.2 Task definition
Given a query fact fq and a KG K , we aim to find a set of other,

relevant facts from K . Specifically, we want to enumerate and rank

a set of candidate facts F = { fc : fc ⊆ K , fc , fq } based on

their relevance to fq . A candidate fact fc is relevant to the query

fact fq if it provides useful and contextual information. Figure 1

shows an example part of our KG that is relevant to the query fact

founderOf ⟨Bill Gates,Microsoft⟩. Note that a candidate fact does

not have to be directly connected to both entities of the query fact

to be relevant, e.g., profession⟨Paul Allen, Programmer⟩. Similarly,

a fact can be related to one or more entities in the relationship

instance, e.g., parentOf ⟨Bill Gates, Jennifer Katharine Gates⟩, but
not provide any context, thus being considered irrelevant.

1
Compound Value Type (CVT) entities are special entities frequently used in KGs such

as Freebase and Wikidata to model fact attributes. See Figure 2 for an example.

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

766

Algorithm 1 Fact enumeration for a given query fact fq .

Input: A query fact fq = r ⟨s, t⟩
Output: A set of candidate facts F
1: F ← {}
2: for e ∈ {s, t } do
3: for n ∈ GetOutNeighbors(e) + GetInNeighbors(e) do
4: F .addAll (GetFacts(e,n))
5: if IsClassOrType(n) then
6: continue

7: for n2 ∈ GetOutNeighbors(n) do
8: F .addAll (GetFacts(n,n2))

9: for n2 ∈ GetInNeighbors(n) do
10: F .addAll (GetFacts(n2,n))

11: return F

3 METHOD
In this section we describe our proposed neural fact contextualiza-

tion method (NFCM) which works in two steps. First, given a query

fact fq , we enumerate a set of candidate facts F = { fc : fc ⊆ K }
(see Section 3.1). Second, we rank the facts in F by relevance to fq
to obtain a final ranked list F ′ using a supervised learning to rank

model (see Section 3.2). We describe how we use distant supervi-

sion to automatically gather the required annotations to train the

supervised learning to rank model in Section 4.3.

3.1 Enumerating KG facts
In this section we describe how we obtain the set of candidate facts

F from K given a query fact fq = r ⟨s, t⟩. Because of the large size
of real-world KGs—which can easily contain upwards of 50 million

entities and 3 billion facts [25]— it is computationally infeasible to

add all possible facts of K in F . Therefore, we limit F to the set of

facts that are in the broader neighborhood of the two entities s and
t . Intuitively, facts that are further away from the two entities of

the query fact are less likely to be relevant.

The procedure we follow is outlined in Algorithm 1. This algo-

rithm enumerates the candidate facts for fq = r ⟨s, t⟩ that are at
most 2 hops away from either s or t . Three exceptions are made to

this rule: (i) CVT entities are not counted as hops, (ii) we do not

include fq in F as it is trivial, and (iii) to reduce the search space,

we do not expand intermediate neighbors that represent an entity

class or a type (e.g., “actor”) as these can have millions of neighbors.

Figure 3 shows an example graph with a subset of the facts that we

enumerate for the query fact spouseOf ⟨Bill Gates,Melinda Gates⟩

using Algorithm 1.

3.2 Fact ranking
Next, we describe how we rank the set of enumerated candidate

facts F with respect to their relevance to the query fact fq = r ⟨s, t⟩.
The overall methodology is as follows. For each candidate fact

fc ∈ F , we create a pair (fq , fc)—an analog to a query-document

pair—and score it using a function u : (fq , fc) → [0, 1] ∈ R (higher

values indicate higher relevance). We then obtain a ranked list of

facts F ′ by sorting the facts in F based on their score.

We begin by describing the training procedure we follow and

continue with the network architecture we use for learning our

scoring function u.

Bill Gates

B&M G.

Foundation

cvt1

Melinda

Gates

Microsoft

Software

Paul Allen

Programmer

1975-04

1955-10

1964-08

Lanai

1994-01

Jennifer

Gates

cvt2

CEO

1975-04

2000-01

sp
o
u
se sp

o
u
se

fo
u
n
d
e
r
O
f

in
d
u
s
tr
y

founderOf

profession

profession

d
a
t
e
F
o
u
n
d
e
d

d
a
te
O
fB
ir
th

d
a
t
e
O
f
B
i
r
t
h

c
e
r
e
m
o
n
y
A
t

marriageDate

p
a
re
n
tO
f p

a
re
n
tO
f

founderOf founderOf

l
e
a
d
e
r
O
f

leadership

le
a
d
e
r
s

from

to

Figure 3: Graph with a subset of the facts that are enumer-
ated for the query fact spouseOf (Bill Gates,Melinda Gates).
The entities of the query fact are shaded.

Learning procedure. We train a network that learns the scor-

ing function u (fq , fc) end-to-end in mini-batches using stochastic

gradient descent (we define the network architecture below). We

optimize the model parameters using Adam [19]. During training

we minimize a pairwise loss to learn the function u, while during
inference we use the learned function u to score a query-candidate

fact pair (fq , fc). This paradigm has been shown to outperform

pointwise learning methods in ranking tasks, while keeping infer-

ence efficient [13]. Each batch B consists of query-candidate fact

pairs (fq , fc) of a single query fact fq . For constructing B for a

query fact fq , we use all pairs (fq , fc) that are labeled as relevant

and sample k pairs (fq , fc) that are labeled as irrelevant. During

inference, we minimize the mean pairwise squared error between

all pairs of (fq , fc) in B × B:

L(B,θ) =
1

|B |

∑
⟨x1,x2⟩∈B×B

([l (x1) − l (x2)] − [u (x1) − u (x2)])
2, (1)

where x1 = (fq , fc1) and x2 = (fq , fc2) are query-candidate fact
pairs in the set B × B, l (x) ∈ {0, 1} is the relevance label of a query-
candidate fact pair x , |B | is the batch size, and θ are the parameters

of the model which we define below.

Network architecture. Figure 4 shows the network architecturewe
designed for learning the scoring function u (fq , fc). We encode the

query fact fq in a vectorvq using an RNN (see Section 3.2.1). As we

will explain further in that section, we do not model the entities in

the facts independently due to the large number of entities; instead,

we model each entity as an aggregation of its types. Therefore,

instead of modeling the candidate fact fc in isolation and losing

per-entity information, we first enumerate all the paths up to two

hops away from both the entities of the query fact fq (s and t) to
all the entities of the candidate fact fc (s ′ and t ′). Let As denote
the set of paths from s to all the entities of fc . Let At denote the
set of paths from t to all the entities of fc . For each A ∈ {As ,At },
we first encode all the paths in A using an RNN (Section 3.2.1),

and then combine the resulting encoded paths using the procedure

described in Section 3.2.2. We denote the vectors obtained from

the above procedure for As and At as vas and vat , respectively.
Then we obtain a vectorva = [vas ,vat], where [·, ·] denotes the
concatenation operation (middle part of Figure 4). Note that we use

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

767

!" !" 	→ !%	(from	&)

RNN RNN RNN

sum

'

concat

MLP-o

Score

s

)

&

s

)

a

s

)

b

t

)

a

t

)

-

Feature	vector

……

RNN RNN

sum

!" 	→ !%	(from	.)

Figure 4: Network architecture that learns a scoring func-
tion u (fq , fc). Given a query fact fq = r⟨s, t⟩ and a candidate
fact fc = r ′⟨a, b⟩ it outputs a score u (fq , fc). “fq → fc (from
e)” is a label for the paths that start from an entity e of the
query fact (either s or t) and end at an entity e ′ of the can-
didate fact fc . Note that p is a variable in this figure, i.e., it
might refer to different predicates.

the same RNN parameters for all the above operations. To further

inform the scoring function, we design a set of hand-crafted features

x (right-most part of Figure 4). We detail the hand-crafted features

in Section 3.2.3.

Finally, MLP-o([vq ,va ,x]) is a multi-layer perceptron with α
hidden layers of dimension β and one output layer that outputs

u (fq , fc). We use a ReLU activation function in the hidden layers

and a sigmoid activation function in the output layer. We vary the

number of layers to capture non-linear interactions between the

features invq ,va , and x .
The remainder of this section is structured as follows. Section 3.2.1

describes how we encode a single fact, Section 3.2.2 describes how

we combine the representations of a set of facts and finally Sec-

tion 3.2.3 details the hand-crafted features.

3.2.1 Encoding a single fact. Recall from Section 2.1 that a fact

f is a path in the KG. In order to model paths we turn to neural rep-

resentation learning. More specifically, since paths are sequential

by nature we employ recurrent neural networks (RNNs) to encode

them in a single vector [12, 16]. This type of modeling has proven

successful in predicting missing links in KGs [12]. One restriction

that we have in modeling such paths is the very large number of

entities (∼ 1.5 million entities in our dataset) and, since learning

an embedding for such large numbers of entities requires prohibi-

tively large amounts of memory and data, we represent each entity

using an aggregation of its types [12]. Formally, letW z denote

a |Z | × dz matrix, where each row is an embedding of an entity

type z, |Z | is the number of entity types in our dataset and dz is

the entity type embedding dimension. LetW p denote a |P | × dp
matrix, where each row is an embedding of a predicate p, |P | is the
number of predicates in our dataset, and dp is the predicate embed-

ding dimension. In order to model inverse predicates in paths (e.g.,

Microsoft→ founderOf −1 → Paul Allen), we also define a |P | ×dp
matrixW pi , which corresponds to embeddings of the inverse of

each predicate [16].

The procedure we follow for modeling a fact f is as follows. For

simplicity in the notation, in this Section we denote a path as a

sequence of alternate entities and predicates [s0,p0, . . . tm], instead

of a sequence of triples as defined in Section 2.1. For each entity

e ∈ f , we first retrieve the types of e in K . From these, we only

keep the 7 most frequent types in K , which we denote as Ze [12].
We then project each z ∈ Ze to its corresponding type embedding

wz ∈W z and perform element-wise sum on these embeddings to

obtain an embedding we for entity e . We project each predicate

p ∈ f to its corresponding embeddingwp (wp ∈W pi if p is inverse,

wp ∈W p otherwise).

The resulting projected sequence Xf = [ws0 ,wp0 , . . . ,wtm] is

passed to a uni-directional recurrent neural network (RNN). The

RNN has a sequence of hidden states [h1,h2, . . . ,hn], where hi =
tanh(Whhhi−1 +Wxhx i), andWhh andWxh are the parameters

of the RNN. The RNN is initialized with zero state values. We use

the last state of the RNN hn as the representation of the fact f .

3.2.2 Combining a set of facts. We obtain the representation

of the set of encoded facts using element-wise summation of the

encoded facts (vectors). We leave more elaborate methods for com-

bining facts such as attention mechanisms [4, 12] for future work.

3.2.3 Hand-crafted features. Here, we detail the hand-crafted
features x we designed or adjusted for this task. Table 1 lists the

notation we use. We generate features based on feature templates

that are divided into three groups: (i) those that give us a sense of

importance of a fact, (ii) those that give us a sense of relevance of
(fq , fc), and (iii) a set of miscellaneous features. Note that we use

log-computations to avoid underflows.

(i) Fact importance. This group of feature templates give us a

sense on how important a fact f is when taking statistics of the

knowledge graph K into account at a global level. Note that we

calculate these features for both facts fq and fc . The first of these
feature templates measures normalized predicate frequency of each

predicate p that participates in fact f (we also include the minimum,

maximum and average value for each fact as metafeatures [9]). This

is defined as the ratio of the size of the set of triples that have

predicate p in the KG to the total number of triples:

PredFreq(p) =
|TriplesPred (p) |
NumTriples

. (2)

The second feature template is the normalized entity frequency for

each entity e that participates in fact f (we also include the mini-

mum, maximum and average value for each fact as metafeatures).

This is defined as the ratio of the number of triples in which e
occurs in the KG over the number of triples in the KG:

EntFreq(e) =
|TriplesEnt (e) |
NumTriples

. (3)

The final feature template in this feature group is path informa-
tiveness, proposed by Pirrò [26], which we apply for both fq and

fc (recall from Section 2.1 that a fact f is a path in the KG). This

feature is analog to TF.IDF and aims to estimate the importance of

predicates for an entity. The informativeness of a path π is defined

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

768

Table 1: Notation
Name Description Definition

NumTriples Number of triples in K |{⟨s,p, t⟩ : ⟨s,p, t⟩ ∈ K }|
TriplesPred (p) Set of triples that have predicate p {⟨s,p′, t⟩ : ⟨s,p′, t⟩ ∈ K ,p′ = p}
TriplesEnt (e) Set of triples that have entity e {⟨s,p, t⟩ : ⟨s,p, t⟩ ∈ K , s = e ∨ t = e}
TriplesSubj(e) Set of triples that have entity e as subject {⟨s,p, t⟩ : ⟨s,p, t⟩ ∈ K , s = e}
TriplesObj(e) Set of triples that have entity e as object {⟨s,p, t⟩ : ⟨s,p, t⟩ ∈ K , t = e}
UniqEnt (T) The unique set of entities in a set of triples T

⋃
{{s, t } : ⟨s,p, t⟩ ∈ T }

Types(e) The set of types of entity e {z : ⟨e, type, z⟩ ∈ K }
Entities(f) The set of entities of fact f

⋃
{{s, t } : ∀⟨s,p, t⟩ ∈ f }

Preds(f) The set of predicates of fact f {p : ⟨s,p, t⟩ ∈ f }

as follows [26]:

I (π) =
1

2|π |

∑
⟨s,p,t ⟩∈π

PFITFout (p, s,K) + PFITF in (p, t ,K), (4)

where:

PFITFx (p, e,K) = PFx (p, e) ∗ ITF (p),x ∈ {in,out },

where ITF (p) is the inverse triple frequency of predicate p:

ITF (p) = log

NumTriples
|TriplesPred (p) |

,

PFout (p, e) is the outgoing predicate frequency of e when p is the

predicate:

PFout (p, e) =
|TriplesSubj(e) ∩ TriplesPred (p) |

|TriplesSubj(e) |
,

and PF in (p, e) is the incoming predicate frequency of e when p is

the predicate:

PF in (p, e) =
|TriplesObj(e) ∩ TriplesPred (p) |

|TriplesObj(e) |
.

(ii) Relevance. This group of feature templates gives us signal

on the relevance of a candidate fact fc w.r.t. the query fact fq .
The first of these feature templates measures entity similarity for

each pair (e1, e2) ∈ Entities(fq) × Entities(fc) (we also include the

minimum, maximum and average entity similarity as metafeatures).

We measure entity similarity using type-based Jaccard similarity:

EntTypeSim(e1, e2) = JaccardSim(Types(e1), Types(e2)). (5)

The next feature template in the relevance category is entity dis-
tance, which allows us to reason about the distance of two entities

(e1, e2) ∈ Entities(fq) × Entities(fc) (we also include the minimum,

maximum and average entity distance as metafeatures). This fea-

ture is defined as the length of the shortest path between e1 and e2
in K . The intuition is that we can get a signal for the relevance of

fc by measuring how “close” the entities in fc are to the entities of

fq in the KG.

The next set of features measure predicate similarity between

every pair of predicates (p1,p2) ∈ Preds(fq) × Preds(fc) (we also
include the minimum, maximum and average predicate similarity

as metafeatures). The intuition is that if fc has predicates that are
highly similar to the predicates in fq , then fc might be relevant to fq .
We measure predicate similarity in two ways. First, by measuring

the co-occurrence of entities that participate in the predicates p1

and p2:

PredCooccSim(p1,p2) = (6)

JaccardSim(UniqEnt (TriplesPred (p1)),UniqEnt (TriplesPred (p2))).

For instance, PredCooccSim(p1,p2) would be high forp1 = starredIn
and p2 = directedBy. Second, by measuring the jaccard similarity

of the set of predicates in fq with the set of predicates in fc [26]:

SetPredicatesJaccardSim(fq , fc) = (7)

JaccardSim(Preds(fq), Preds(fc)).

Finally, we add a binary feature that captures whether fq and fc
have the same CVT entity, i.e., fc is an attribute of fq .

(iii) Miscellaneous. This set of features includes whether fq has a

CVT entity (same for fc). We also include whether an entity is a date

(for all entities of fq and fc). Finally, we include the concatenation
of the predicates of fq as a feature using one-hot encoding.

4 EXPERIMENTAL SETUP
In this section we describe the setup of our experiments that aim

to answer the following research questions:

RQ1 How does NFCM perform compared to a set of heuristic

baselines on a crowdsourced dataset?

RQ2 How does NFCM perform compared to a scoring function that

scores candidate facts w.r.t. a query fact using the relevance

labels gathered from distant supervision on a crowdsourced

dataset?

RQ3 Does NFCM benefit from both the handcrafted features and

the automatically learned features?

RQ4 What is the per-relationship performance of NFCM? How

does the number of instances per relationship affect the rank-

ing performance?

4.1 Knowledge graph
We use the latest edition of Freebase as our knowledge graph [8].

We include Freebase relations from the following set of domains:

People, Film, Music, Award, Government, Business, Organization,
Education. Following previous work [23], we exclude triples that

have an equivalent reversed triple.

4.2 Dataset
Our dataset consists of query facts, candidate facts, and a relevance

label for each query-candidate fact pair. In order to construct our

evaluation dataset we need to start with a set of relationships. Given

that most of our domains are people-centric, we obtain this set by

extracting all relationships from Freebase that have an entity of type

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

769

Table 2: Examples of relationships used in this work.
Domain Relationship

People spouseOf (person, person)
parentOf (person, person)
educatedAt (person, organization)

Business founderOf (person, organization)
boardMemberOf (person, organization)
leaderOf (person, organization)

Film starredIn(person,film)
directorOf (person,film)
producerOf (person,film)

Person as one of the entities. In the end, we are left with 65 unique

relationships in total (see Table 2 for example relationships). We

then proceed to gather our set of query facts. For each relationship,

we sample at most 2,000 query facts, provided that they have at

least one relevant fact after applying the procedure described in

Section 4.3. In total, the dataset contains 62,044 query facts (954.52

on average per relationship). After gathering query facts for each

relation, we enumerate candidate facts for each query fact using

the procedure described in Section 3.1. Finally, we randomly split

the dataset per relationship (70% of the query facts for training,

10% for validation, 20% for testing). Table 3 shows statistics of the

resulting dataset.

Table 3: Statistics of the dataset gathered using distant su-
pervision (see Section 4.3).
Part # query facts # candidate facts

average median max. min.

Training 44,632 1,420 741 9,937 2

Validation 4,983 1,424 749 9,796 3

Test 12,429 1,427 771 9,924 3

Note that we train and tune the fact ranking models with the

training and validation sets in Table 3 respectively, using the auto-

matically gathered relevance labels (see Section 4.3). The test set

was only used for preliminary experiments (not reported) and for

constructing our manually curated evaluation dataset (see Section

4.4). We describe how we automatically gather noisy relevance

labels for our dataset in the next section.

4.3 Gathering noisy relevance labels
Gathering relevance labels for our task is challenging due to the

size and heterogeneous nature of KGs, i.e., having a large number

of facts and relationship types. Therefore, we turn to distant super-

vision [23] to gather relevance labels at scale. We choose to get a

supervision signal from Wikipedia for the following reasons: (i) it

has a high overlap of entities with the KG we use, and (ii) facts that

are in KGs are usually expressed in Wikipedia articles alongside

other, related facts. We filter Wikipedia to select articles whose

main entity is in Freebase, and the entity type corresponds to one

of the domains listed in Section 4.1. This results in a set of 1,743,191

Wikipedia articles.

The procedure we follow for gathering relevance labels given a

query fact fq and its set of candidate facts F is as follows. For a query

fact fq = r ⟨s, t⟩, we focus on the Wikipedia article of entity s . First,

as Wikipedia style guidelines dictate that only the first mention

of another entity should be linked, we augment the articles with

additional entity links using an entity linking method proposed

in [32]. Next, we retain only segments of the Wikipedia article that

contain references to t . Here, a segment refers to the sentence that

has a reference to t and also one sentence before and one after

the sentence. For each such extracted segment, we assume that it

expresses the fact fq , which is a common assumption in gathering

noisy training data for relation extraction [23]. From the segments,

we then collect a set of other entities, O , that occur in the same

sentence that mentions t : for computational efficiency, we enforce

|O | ≤ 20. Then, we extract facts for all possible pairs of entities

⟨e1, e2⟩ ∈ {O ∪ {s, t }} × {O ∪ {s, t }}. If there is a single fact fc in K
that connects e1 and e2, we deem fc relevant for fq . However, if
there are multiple facts connecting e1 and e2 in K , the mention of

the fact in the specific segment is ambiguous and thus we do not

deem any of these facts as relevant [30]. The rest of the facts in F
are deemed irrelevant for fq .

The distribution of relevant/non-relevant labels in the distantly

supervised data is heavily skewed: out of 87,998,956 facts in total,

only 225,032 are deemed to be relevant (0.26%). This is expected

since the candidate fact enumeration step can generate thousands

of facts for a certain query fact (see Section 3.1).

As a sanity check, we evaluate the performance of our approach

to collect distant supervision data by sampling 5 query facts for each

relation in our dataset. For these query facts, we perform manual

annotations on the extracted candidate facts that were deemed as

relevant by the distant supervision procedure. We obtain an overall

precision of 76% when comparing the relevance labels of the distant

supervision against our manual annotations. This demonstrates the

potential of our distant supervision strategy for creating training

data.

4.4 Manually curated evaluation dataset
In order to evaluate the performance of NFCM on the KG fact con-

textualization task, we perform crowdsourcing to collect a human-

curated evaluation dataset. The procedure we use to construct this

evaluation dataset is as follows. First, for each of the 65 relationships

we consider, we sample five query facts of the relationship from

the test set (see Section 4.2). Since fact enumeration for a query

fact can yield hundreds or thousands of facts (Section 3.1), it is

infeasible to consider all the candidate facts for manual annotation.

Therefore, we only include a candidate fact in the set of facts to be

annotated if: (i) the candidate fact was deemed relevant by the au-

tomatic data gathering procedure (Section 4.3), or (ii) the candidate

fact matches a fact pattern that is built using relevant facts that

appear in at least 10% of the query facts of a certain relationship.

An example fact pattern is parentOf ⟨?, ?⟩, which would match the

fact parentOf ⟨Bill Gates, Jennifer Gates⟩.
We use the CrowdFlower platform, and ask the annotators to

judge a candidate fact w.r.t. its relevance to a query fact. We provide

the annotators with the following scenario (details omitted for

brevity):

We are given a specific real-world fact, e.g., “Bill Gates is
the founder of Microsoft”, which we call the query fact.
We are interested in writing a description of the query
fact (a sentence or a small paragraph). The purpose of
this assessment task is to identify other facts that could
be included in a description of the query fact. Note that

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

770

Table 4: Relevance label distribution of the crowdsourced
evaluation dataset.
Relevance Non-attribute facts (%) Attribute facts (%)

Irrelevant 60.86 34.34

Somewhat relevant 34.49 57.81

Very relevant 4.63 7.84

even though all facts presented for assessment will be
accurate, not all will be relevant or equally important
to the description of the main fact.

We ask the annotators to assess the relevance of a candidate fact in

a 3-graded scale:

• very relevant: I would include the candidate fact in the de-

scription of the query fact; the candidate fact provides addi-

tional context to the query fact.

• somewhat relevant: I would include the candidate fact in the

description of the query fact, but only if there is space.

• irrelevant: I would not include the candidate fact in the de-

scription of the query fact.

Alongside each query-candidate fact pair, we provide a set of extra

facts that could possibly be used to decide on the relevance of a

candidate fact. These include facts that connect the entities in the

query fact with the entities in the candidate fact. For example, if

we present the annotators with the query fact spouseOf ⟨Bill Gates,
Melinda Gates⟩ and the candidate fact parentOf ⟨Melinda Gates,

Jennifer Gates⟩ we also show the fact parentOf ⟨Bill Gates, Jennifer
Gates⟩.

Each query-candidate fact pair is annotated by three annotators.

We use majority voting to obtain the gold labels, breaking ties

arbitrarily. The annotators get a payment of 0.03 dollars per query-

candidate fact pair.

By following the crowdsourcing procedure described above, we

obtain 28,281 fact judgments for 2,275 query facts (65 relations, 5

query facts each). Table 4 details the distribution of the relevance

labels. One interesting observation is that facts that are attributes

of other facts (see Section 2.1) tend to have relatively more relevant

judgments than the ones that are not. This is expected since some

of them are attributes of the query fact (e.g., date of marriage for a

spouseOf query fact). Finally, Fleiss’ kappa is κ = 0.4307, which is

considered moderate agreement. Note that all the results reported

in Section 5 are on the manually curated dataset described here.

Evaluation metrics. We use the following standard retrieval eval-

uation metrics: MAP, NDCG@5, NDCG@10 andMRR. In the case of

MAP and MRR, which expect binary labels, we consider “very rele-

vant” and“somewhat relevant” as “relevant". We report on statistical

significance with a paired two-tailed t-test.

4.5 Heuristic baselines
To the best of our knowledge, there is no previously published

method that addresses the task introduced in this paper. Therefore,

we devise a set of intuitive baselines that are used to showcase

that our task is not trivial. We derive them by combining features

we introduced in Section 3.2.3. We define these heuristic functions

below:

• Fact informativeness (FI). Informativeness of the candidate

fact fc [26, Eq. 4]. This baseline is independent of fq .

• Average predicate similarity (APS). Average predicate similar-

ity of all pairs of predicates (p1,p2) ∈ Preds(fq) × Preds(fc)
(Eq. 6). The intuition here is that fc might be relevant to fq if

it contains predicates that are similar to the predicates of fq .
• Average entity similarity (AES). Average entity similarity of

all pairs of entities in (e1, e2) ∈ Entities(fq) × Entities(fc)
(Eq. 5). The assumption here is that fc might be relevant to

fq if it contains entities that are similar to the entities of fq .

4.6 Implementation details
The models described in Section 3.2 are implemented in TensorFlow

v.1.4.1 [1]. Table 5 lists the hyperparameters of NFCM. We tune the

variable hyper-parameters of this table on the validation set and

optimize for NDCG@5.

Table 5: Hyperparameters of NFCM, tuned on the validation
set.
Description Value(s)

negative samples k during training [1, 10, 100]

Learning rate [0.01, 0.001, 0.0001]

dz : entity type embedding dimension [64, 128, 256]

dp : Predicate embedding dimension [64, 128, 256]

RNN cell size [64, 128, 256]

RNN cell dropout [0.0, 0.2]

α : # hidden layers of MLP-o [0, 1, 2]

β : # dimension of MLP-o hidden layers [50, 100]

L2 regularization factor for MLP-o kernel [0.0, 0.1, 0.2]

5 RESULTS AND DISCUSSION
In this section we discuss and analyze the results of our evaluation,

answering the research questions listed in Section 4.

In our first experiment, we compare NFCM to a set of heuristic

baselines we derived to answer RQ1. Table 6 shows the results.

We observe that NFCM significantly outperforms the heuristic

baselines by a large margin. We have also experimented with linear

combinations of the above heuristics but the performance does

not improve over the individual ones and therefore we omit those

results. We conclude that the task we define in this paper is not

trivial to solve and simple heuristic functions are not sufficient.

In our second experiment we compare NFCM with distant super-

vision and aim to answer RQ2. That is, how does NFCM perform

compared to DistSup, a scoring function that scores candidate facts

w.r.t. a query fact using the relevance labels gathered from distant

supervision. The aim of this experiment is to investigate whether it

is beneficial to learn ranking functions based on the signal gathered

from distant supervision, and to see if we can improve perfor-

mance over the latter. Table 7 shows the results. We observe that

NFCM significantly outperforms DistSup on MAP, NDCG@5, and

NDCG@10 and conclude that learning ranking functions (and in

particular NFCM) based on the signal gathered from distant su-

pervision is beneficial for this task. We also observe that NFCM

performs significantly worse than DistSup on MRR. One possible

reason for this is that NFCM returns facts that are indeed relevant

but were not selected for annotation and thus assumed not relevant,

since the data annotation procedure is biased towards DistSup (see

Section 4.4). We aim to validate this hypothesis by conducting an

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

771

Table 6: Comparison between NFCM and the heuristic base-
lines. Significance is tested betweenNFCM andAES, the best
performing baseline. We depict a significant improvement
of NFCM over AES for p < 0.05 as ▲ .
Method MAP NDCG@5 NDCG@10 MRR

FI 0.1222 0.0978 0.1149 0.1928

APS 0.2147 0.2175 0.2354 0.3760

AES 0.2950 0.3284 0.3391 0.5214

NFCM 0.4874▲ 0.5110▲ 0.5289▲ 0.7749▲

Table 7: Comparison betweenNFCMand the distant supervi-
sion baseline.We depict a significant improvement of NFCM
over DistSup as ▲ and a significant decrease as ▼ (p < 0.05).
Method MAP NDCG@5 NDCG@10 MRR

DistSup 0.2831 0.4489 0.3983 0.8256
NFCM 0.4874▲ 0.5110▲ 0.5289▲ 0.7749

▼

Table 8: Comparison between the full NFCM model and
its variations. Significance is tested between NFCM and its
best variation (LF). We depict a significant improvement of
NFCM over LF for p < 0.05 as ▲ .
Method MAP NDCG@5 NDCG@10 MRR

HF 0.4620 0.4753 0.4989 0.7180

LF 0.4676 0.4993 0.5134 0.7647

NFCM 0.4874▲ 0.5110 0.5289▲ 0.7749

�1.0

�0.5

0.0

0.5

1.0

�
N

D
C

G
@

5

Figure 5: Per query fact differences inNDCG@5between the
variation of NFCM that only uses the learned features (LF)
and the best-performing variation of NFCM that only uses
the hand-crafted features (HF). A positive value indicates
that LF performs better than HF on a query fact and vice
versa.

additional user study in future work. Nevertheless, having an au-

tomatic method for KG fact contextualization trained with distant

supervision becomes increasingly important for tail entities for

which we might only have information in the KG itself and not in

external text corpora or other sources.

In order to answer RQ3, that is, whether NFCM benefits from

both the hand-crafted features and the learned features, we perform

an ablation study. Specifically, we test the following variations of

NFCM that only modify the final layer of the architecture (see

Section 3.2):

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

@
5

Figure 6: NDCG@5 for NFCM per relationship.

(i) LF: Keeps the learned features (vq andva), and ignores the

hand-crafted features x .
(ii) HF: Keeps the hand-crafted features (x) and ignores the

learned features (vq andva).

We tune the parameters of LF and HF on the validation set. Ta-

ble 8 shows the results. First, we observe that NFCM outperforms

HF by a large margin. Also, NFCM outperforms LF on all metrics

(significantly so for MAP and NDCG@10) which means that by

combining HF and LF we are able to obtain more relevant results

at lower positions of the ranking. We aim to explore more sophis-

ticated ways of combining LF and HF in future work. In order to

verify whether LF and HF have complementary signals, we plot the

per-query differences in NDCG@5 for LF and HF in Figure 5. We

observe that the performance of LF and HF varies across query facts,

confirming the hypotheses that LF and HF yield complementary

signals.

In order to answer RQ4, we conduct a performance analysis per

relationship. Figure 6 shows the per-relationship NDCG@5 perfor-

mance of NFCM – query fact scores are averaged per relationship.

The relationship for which NFCM performs best is profession, which
has a NDCG@5 score of 0.8275. The relationship for which NFCM

performs worst at is awardNominated, which has a NDCG@5 score

of 0.1. Further analysis showed that awardNominated has a very

large number of candidate facts on average, which might explain

the poor performance on that relationship.

Furthermore, we investigate how the number of queries we have

in the training set for each relationship affects the ranking perfor-

mance. Figure 7 shows the results. From this figure we conclude

that there is no clear relationship and thus that NFCM is robust to

the size of the training data for each relationship.

Next, we analyse the performance of NFCM with respect to the

number of candidates per query fact; Figure 8 shows the results.

We observe that the performance decreases when we have more

candidate facts for a query, although not by a large margin, and that

there does not seem to be a clear relationship between performance

and the number of candidates to rank.

6 RELATEDWORK
The specific task we introduce in this paper has not been addressed

before, but there is related work in three main areas: entity rela-

tionship explanation, distant supervision, and fact ranking.

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

772

< 500
500-1000

1000-2000

Number of training query facts per relationship

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

@
5

Figure 7: Box plot that shows NDCG@5 per number of
training query facts of each relationship (binned). Each box
shows the median score with an orange line and the upper
and lower quartiles (maximum and lower values shown out-
side each box).

< 500
500-1000

1000-2000
2000-4000

4000-6000
6000-9000

Number of candidate facts per query fact

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

@
5

Figure 8: Box plot that shows NDCG@5 per number of can-
didate facts of each query fact (binned). Each box shows the
median score with an orange line and the upper and lower
quartiles (maximum and lower values shown outside each
box).

6.1 Relationship Explanation
Explanations for relationships between pairs of entities can be

provided in two ways: structurally, i.e., by providing paths or sub-

graphs in a KG containing the entities, or textually, by ranking or

generating text snippets that explain the connection.

Fang et al. [14] focus on explaining connections between entities

by mining relationship explanation patterns from the KG. Their

approach consists of two main components: explanation enumera-

tion and explanation ranking. The first phase generates all patterns

in the form of paths connecting the two entities in the KG, which

are then combined to form explanations. In the final stage, the

candidate explanations are ranked using notions of interestingness.

Seufert et al. [29] propose a similar approach for entity sets. Their

method focuses on explaining the connections between entity sets

based on the concept of relatedness cores, i.e., dense subgraphs that

have strong relations with both query sets. Pirrò [26] also provide

explanations of the relation between entities in terms of the top-

k most informative paths between a query pair of entities; such

paths are ranked and selected based on path informativeness and

diversity, and pattern informativeness.

As to textual explanations for entity relationships, Voskarides

et al. [33] focus on human-readable descriptions. They model the

task as a learning to rank problem for sentences and employ a rich

set of features. Huang et al. [18] build on the aforementioned work

and propose a pairwise ranking model that leverages clickthrough

data and uses a convolutional neural network architecture. While

these approaches rank existing candidate explanations, Voskarides

et al. [32] focus on generating explanations from scratch. They

automatically identify the most common sentence templates for

a particular relationship and, for each new relationship instance,

these templates are ranked and instantiated using contextual infor-

mation from the KG.

The work described above focuses on explaining entity relation-

ships in KGs; no previous work has focused on ranking additional

KG facts for an input entity relationship as we do in this paper.

6.2 Distant Supervision
When obtaining labeled data is expensive, training data can be gen-

erated automatically. Mintz et al. [23] introduce distant supervision

for relation extraction; for a pair of entities that is connected by a

KG relation, they treat all sentences that contain those entities in a

text corpus as positive examples for that relation. Follow-up work

on relation extraction address the issue of noise related to distant

supervision. Alfonseca et al. [3], Riedel et al. [28], Surdeanu et al.

[31] refine the model by relaxing the assumptions in the original

method or by modeling noisy labels.

Beyond relation extraction, distant supervision has also been

applied in other KG-related tasks. Ren et al. [27] introduce a joint

approach entity recognition and classification based on distant

supervision. Ling and Weld [21] used distant supervision to auto-

matically label data for fine-grained entity recognition.

6.3 Fact Ranking
In fact ranking, the goal is to rank a set of attributes with respect to

an entity. Hasibi et al. [17] consider fact ranking as a component for

entity summarization for entity cards. They approach fact ranking

as a learning to rank problem. They learn a ranking model based

on importance, relevance, and other features relating a query and

the facts. Aleman-Meza et al. [2] explore a similar task, but rank

facts with respect to a pair of entities to discover paths that contain

informative facts between the pair.

Graph matching involves matching two graphs and discovering

the patterns of relationships between them to infer their similarity

[11]. Although our task can be considered as comparing a small

query subgraph (i.e., query triples) and a knowledge graph, the goal

is different from graph matching which mainly concerns aligning

two graphs rather than enhancing one query graph.

Our work differs from the work discussed above in the following

major ways. First, we enrich a query fact between two entities

by providing relevant additional facts in the context of the query

fact, taking into account both the entities and the relation of the

query fact. Second, we rank whole facts from the KG instead of

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

773

just entities. Last, we provide a distant supervision framework for

generating the training data so as to make our approach scalable.

7 CONCLUSION
In this paper, we introduced the knowledge graph fact contextu-

alization task and proposed NFCM, a weakly-supervised method

to address it. NFCM first generates a candidate set for a query fact

by looking at 1 or 2-hop neighbors and then ranks the candidate

facts using supervised machine learning. NFCM combines hand-

crafted features with features that are automatically identified using

deep learning. We use distant supervision to boost the gathering

of training data by using a large entity-tagged text corpus that

has a high overlap with entities in the KG we use. Our experimen-

tal results show that (i) distant supervision is an effective means

for gathering training data for this task, (ii) NFCM significantly

outperforms several heuristic baselines for this task, and (iii) both

the handcrafted and automatically-learned features contribute to

the retrieval effectiveness of NFCM. For future work, we aim to

explore more sophisticated ways of combining handcrafted with

automatically learned features for ranking. Additionally, we want

to explore other data sources for gathering training data, such as

news articles and click logs. Finally, we want to explore methods

for combining and presenting the ranked facts in search engine

result pages in a diversified fashion.

Data
To facilitate reproducibility of our results, we share the data used to

run our experiments at https://www.techatbloomberg.com/research-

weakly-supervised-contextualization-knowledge-graph-facts/.

Acknowledgements
The authors would like to thank the anonymous reviewers (and

especially reviewer #1) for their useful and constructive feedback.

This research was supported by Ahold Delhaize, Amsterdam Data

Science, the Bloomberg Research Grant program, the China Schol-

arship Council, the Criteo Faculty Research Award program, Else-

vier, the European Community’s Seventh Framework Programme

(FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the

Google Faculty Research Awards program, the Microsoft Research

Ph.D. program, the Netherlands Institute for Sound and Vision,

the Netherlands Organisation for Scientific Research (NWO) un-

der project nrs CI-14-25, 652.002.001, 612.001.551, 652.001.003, and

Yandex. All content represents the opinion of the authors, which is

not necessarily shared or endorsed by their respective employers

and/or sponsors.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
USENIX Association, 265–283.

[2] B. Aleman-Meza, C. Halaschek-Weiner, I. B. Arpinar, Cartic Ramakrishnan, and

A. P. Sheth. 2005. Ranking complex relationships on the semantic Web. IEEE
Internet Computing 9, 3 (May 2005), 37–44.

[3] Enrique Alfonseca, Katja Filippova, Jean-Yves Delort, and Guillermo Garrido.

2012. Pattern Learning for Relation Extraction with a Hierarchical Topic Model.

In ACL. ACL, Stroudsburg, PA, USA, 54–59.
[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine

Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473

(2014), 1–15.

[5] Hannah Bast, Buchhold Björn, and Elmar Haussmann. 2016. Semantic search on

text and knowledge bases. Found. Trends Inf. Retr. 10, 2-3 (June 2016), 119–271.

[6] Roi Blanco, Berkant Barla Cambazoglu, Peter Mika, and Nicolas Torzec. 2013.

Entity Recommendations in Web Search. In ISWC. Springer Berlin Heidelberg,

Berlin, Heidelberg, 33–48.

[7] Roi Blanco, Giuseppe Ottaviano, and Edgar Meij. 2015. Fast and Space-Efficient

Entity Linking for Queries. InWSDM. ACM, New York, NY, USA, 179–188.

[8] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: A Collaboratively Created Graph Database for Structuring Human

Knowledge. In SIGMOD. ACM, New York, NY, USA, 1247–1250.

[9] Alexey Borisov, Pavel Serdyukov, and Maarten de Rijke. 2016. Using metafeatures

to increase the effectiveness of latent semantic models in web search. In WWW.

ACM, New York, NY, USA, 1081–1091.

[10] Horatiu Bota, Ke Zhou, and Joemon M. Jose. 2016. Playing Your Cards Right: The

Effect of Entity Cards on Search Behaviour and Workload. In CHIIR. ACM, New

York, NY, USA, 131–140.

[11] M. Cho, K. Alahari, and J. Ponce. 2013. Learning Graphs to Match. In ICCV. IEEE,
25–32.

[12] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. 2017.

Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural

Networks. In EACL. ACL, Valencia, Spain, 132–141.
[13] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce

Croft. 2017. Neural ranking models with weak supervision. In SIGIR. ACM, New

York, NY, USA, 65–74.

[14] Lujun Fang, Anish Das Sarma, Cong Yu, and Philip Bohannon. 2011. Rex: ex-

plaining relationships between entity pairs. VLDB 5, 3 (2011), 241–252.

[15] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-

Beltrachini. 2017. Creating Training Corpora for NLG Micro-Planners. In ACL.
ACL, 179–188.

[16] Kelvin Guu, John Miller, and Percy Liang. 2015. Traversing Knowledge Graphs

in Vector Space. In EMNLP. ACL, 318–327.
[17] Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. 2017. Dynamic Factual

Summaries for Entity Cards. In SIGIR. ACM, New York, NY, USA, 773–782.

[18] Jizhou Huang, Wei Zhang, Shiqi Zhao, Shiqiang Ding, and Haifeng Wang. 2017.

Learning to Explain Entity Relationships by Pairwise Ranking with Convolutional

Neural Networks. In IJCAI. IJCAI, 4018–4025.
[19] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. CoRR abs/1412.6980 (2014), 1–15. arXiv:1412.6980

[20] Rémi Lebret, David Grangier, and Michael Auli. 2016. Neural Text Generation

from Structured Data with Application to the Biography Domain. In EMNLP.
ACL, 1203–1213.

[21] Xiao Ling and Daniel S. Weld. 2012. Fine-grained Entity Recognition. In AAAI.
AAAI Press, 94–100.

[22] Iris Miliaraki, Roi Blanco, and Mounia Lalmas. 2015. From "Selena Gomez" to

"Marlon Brando": Understanding Explorative Entity Search. InWWW. Interna-

tional World Wide Web Conferences Steering Committee, Republic and Canton

of Geneva, Switzerland, 765–775.

[23] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision

for relation extraction without labeled data. In ACL/AFNLP. ACL, 1003–1011.
[24] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2016.

A review of relational machine learning for knowledge graphs: From multi-

relational link prediction to automated knowledge graph construction. Proc. of
the IEEE 104, 1 (2016), 11–33.

[25] Thomas Pellissier Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas Steiner,

and Lydia Pintscher. 2016. From Freebase to Wikidata: The Great Migration.

In WWW. International World Wide Web Conferences Steering Committee,

Republic and Canton of Geneva, Switzerland, 1419–1428.

[26] Giuseppe Pirrò. 2015. Explaining and Suggesting Relatedness in Knowledge

Graphs. In ISWC. Springer-Verlag New York, Inc., New York, NY, USA, 622–639.

[27] Xiang Ren, Ahmed El-Kishky, Chi Wang, Fangbo Tao, Clare R. Voss, and Jiawei

Han. 2015. ClusType: Effective Entity Recognition and Typing by Relation Phrase-

Based Clustering. In KDD. ACM, New York, NY, USA, 995–1004.

[28] Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010. Modeling Relations

and Their Mentions Without Labeled Text. In ECML-PKDD. Springer-Verlag,
Berlin, Heidelberg, 148–163.

[29] Stephan Seufert, Klaus Berberich, Srikanta J. Bedathur, Sarath Kumar Kondreddi,

Patrick Ernst, and Gerhard Weikum. 2016. ESPRESSO: Explaining Relationships

Between Entity Sets. In CIKM. ACM, New York, NY, USA, 1311–1320.

[30] Daniil Sorokin and Iryna Gurevych. 2017. Context-Aware Representations for

Knowledge Base Relation Extraction. In EMNLP. ACL, 1784–1789.
[31] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D. Manning.

2012. Multi-instance Multi-label Learning for Relation Extraction. In EMNLP-
CoNLL. ACL, 455–465.

[32] Nikos Voskarides, Edgar Meij, and Maarten de Rijke. 2017. Generating Descrip-

tions of Entity Relationships. In ECIR. Springer International Publishing, Cham,

317–330.

[33] Nikos Voskarides, Edgar Meij, Manos Tsagkias, Maarten de Rijke, and Wouter

Weerkamp. 2015. Learning to Explain Entity Relationships in Knowledge Graphs.

In ACL-IJCNLP. ACL, 564–574.
[34] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. 2015. Semantic

Parsing via Staged Query Graph Generation: Question Answering with Knowl-

edge Base. In ACL-IJCNLP. ACL, 1321–1331.

Session 6C: Knowledge Bases/Graphs SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

774

https://www.techatbloomberg.com/research-weakly-supervised-contextualization-knowledge-graph-facts/
https://www.techatbloomberg.com/research-weakly-supervised-contextualization-knowledge-graph-facts/
http://arxiv.org/abs/1412.6980

	Abstract
	1 Introduction
	2 Problem statement
	2.1 Preliminaries
	2.2 Task definition

	3 Method
	3.1 Enumerating KG facts
	3.2 Fact ranking

	4 Experimental setup
	4.1 Knowledge graph
	4.2 Dataset
	4.3 Gathering noisy relevance labels
	4.4 Manually curated evaluation dataset
	4.5 Heuristic baselines
	4.6 Implementation details

	5 Results and Discussion
	6 Related work
	6.1 Relationship Explanation
	6.2 Distant Supervision
	6.3 Fact Ranking

	7 Conclusion
	References

