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ABSTRACT
Knowledge graphs have been used throughout the history of infor-
mation retrieval for a variety of tasks. Technological advances in
knowledge acquisition and alignment technology from the last few
years gave rise to a body of new approaches for utilizing knowledge
graphs in text retrieval tasks. It is therefore time to consolidate
the community e�orts in studying how knowledge graph technol-
ogy can be employed in information retrieval systems in the most
e�ective way. It is also time to start a dialogue with researchers
working on knowledge acquisition and alignment to ensure that
resulting technologies and algorithms meet the demands posed by
information retrieval tasks. �e goal of this workshop is to bring
together a community of researchers and practitioners who are in-
terested in using, aligning, and constructing knowledge graphs and
similar semantic resources for information retrieval applications.

1 OVERVIEW
�e past decade has witnessed the emergence of publicly available
knowledge graphs (KGs) such as DBpedia, Freebase, and WikiData
and also proprietary KGs such as Google’s Knowledge Graph and
Microso�’s Satori. �e availability of large knowledge graphs and
grounding techniques have given rise to successful approaches
for many information retrieval (IR) tasks. It has been shown that
heterogeneous information in knowledge graphs and entity annota-
tions can help to signi�cantly improve information retrieval tasks.
In particular, the semantics encoded in knowledge graphs have
been e�ectively integrated in various aspects of IR systems, includ-
ing query representation [7, 8, 13, 26], retrieval models [7, 18, 21],
learning-to-rank [25], and generic representations [21].

�is workshop focuses on the end-to-end utilization of knowl-
edge graphs and semantics in text retrieval and IR-related down-
stream applications. �e scope includes suggestions for acquisi-
tion, alignment, and utilization of knowledge graphs and seman-
tic resources for the purpose of optimizing end-to-end performance
of information retrieval systems.
Acquisition includes (but is not limited to) knowledge graph pop-
ulation and semantic resource construction with a special focus on
enabling IR-related techniques and applications. Examples include
domain/task-speci�c knowledge graph construction, knowledge
representation, and query-time knowledge extraction.
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Alignment includes (but is not limited to) the semantic annotation
process such as entity linking of short keyword queries or relation
extraction for satisfying information needs. It also includes informa-
tion integration, ontology matching, entity search, and knowledge
graph selection based on an information need.
Utilization includes (but is not limited to) using knowledge graphs
and semantics in text-centric tasks. Examples are utilizing the
knowledge graph to improve document retrieval, question answer-
ing, factoid search, dialogue systems, event tracking, and retrieval
of complex answers.

We aim to bring together researchers and practitioners within the
IR �eld and related communities to discuss ongoing research and
best practices with the goal of addressing open research challenges
of this area. �e missions of KG4IR include the following.

• Facilitate meetings for researchers working on acquisition,
alignment, and utilization of knowledge graphs for text
retrieval and analysis.

• Serve as an incubator for long-term research on resource
construction and end-to-end utilization.

• Act as a nursery for future tasks, applications, and evalua-
tions that bene�t from knowledge graphs and text retrieval.

• Provide a voice and platform to the community.

2 RELATEDWORK
Acquisition. Knowledge graphs are either semi-manually con-
structed (Cyc [16], Freebase [4]) or machine-generated, for exam-
ple using Wikipedia (DBpedia1, Yago2). Supervised and unsuper-
vised relation extraction algorithms [10, 20] provide an alternative
for the construction or augmentation of knowledge graphs [9].
�rough cross-references, knowledge graphs form the linked open
data cloud.3
Alignment. A key ingredient for utilizing knowledge graphs are
algorithms that align knowledge graph elements to natural lan-
guage text. Given text passages, entity linking algorithms identify
mentions of knowledge graph entities. While popular algorithms
like “TagMe!” [11] can be applied to many documents, specialized
entity linking algorithms for tweets and queries have receivedmuch
a�ention [3, 6, 19]. A byproduct of relation extraction algorithms
[10, 20] is an alignment between relation expressions in the text to
an edge in the knowledge graph. A related task is to �nd sentences
that describe a relation [24].

Entity search techniques aim to retrieve knowledge graph ele-
ments in response to an information need [14] and di�erent varia-
tions on using �elded retrieval models or entity links in documents
1h�p://www.dbpedia.org
2h�p://www.mpi-inf.mpg.de/yago
3h�p://linkeddata.org
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have been developed [1, 23, 28]. Entity search is also utilized in
text-centric retrieval systems as a query-to-entity alignment com-
ponent [7, 25], i.e., as a retrieval task in its own right.
Utilization. �e utilization of knowledge graphs in text retrieval
and analysis tasks has been a recent breakthrough in information
retrieval. �e rich semantics stored in knowledge graphs have
provided additional indicators for various components of search
systems. Although semantic search traditionally focused on search
within knowledge graphs [12], nowadays it is commonly general-
ized to include any “search with meaning” [2].

One utilization is to enrich query and document representations
with entity links [21] and embedding spaces [8, 27] to derive new
similarity measures. A general latent space approach is to �rst
associate the query with relevant entities (using entity search),
then use entity-centric features for document ranking [7, 18, 25, 26].
Structural graph features provide additional information for the
retrieval of short documents [5].
Open areas. �ere are many opportunities we have only begun
to study. While entity linking yields immediate success, utilizing
relation extraction for text retrieval is much more di�cult [15].
Treating di�erent aspects of entities appropriately is a promising yet
underexplored direction [17, 22]. Finally, widespread application of
knowledge-centric retrieval techniques hinges on the advancement
of knowledge graphs for new domains such as science,4 domain-
speci�c entity linking,5 and complex answer retrieval.6

3 ORGANIZERS
Prof. Dr. Laura Dietz is an Assistant Professor at University of
NewHampshire. Before that shewas a research scientist atMannheim
University and University of Massachuse�s a�er graduating from
the Max Planck Institute for Informatics. Her research focuses on
information retrieval on knowledge-centric information needs. Her
scienti�c contributions span from query expansion with entities to
the prediction of in�uences in citation graphs. She coordinates the
TREC Complex Answer Retrieval track.
Chenyan Xiong is a ��h-year Ph.D. student at the Language Tech-
nologies Institute, Carnegie Mellon University. His research focuses
on using knowledge graphs and semantics to improve text under-
standing in search engines. He has published many KG4IR papers
in SIGIR, CIKM, ICTIR, and WWW.
Dr. Edgar Meij is a senior scientist at Bloomberg L.P. Before this,
he was a research scientist at Yahoo Labs and a postdoc at the
University of Amsterdam, where he also obtained his Ph.D. He has
published 60+ peer-reviewed papers at top international venues
such as SIGIR, WSDM, ISWC, and CIKM on all applications and
aspects of knowledge graphs, entity linking, and semantic search.
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