
Mining, Ranking and Recommending Entity Aspects

Ridho Reinanda†

r.reinanda@uva.nl
Edgar Meij‡

emeij@yahoo-inc.com
Maarten de Rijke†

derijke@uva.nl
† University of Amsterdam, Amsterdam, The Netherlands

‡ Yahoo Labs, London, United Kingdom

ABSTRACT
Entity queries constitute a large fraction of web search queries and
most of these queries are in the form of an entity mention plus some
context terms that represent an intent in the context of that entity.
We refer to these entity-oriented search intents as entity aspects.
Recognizing entity aspects in a query can improve various search
applications such as providing direct answers, diversifying search
results, and recommending queries. In this paper we focus on the
tasks of identifying, ranking, and recommending entity aspects, and
propose an approach that mines, clusters, and ranks such aspects
from query logs.

We perform large-scale experiments based on users’ search ses-
sions from actual query logs to evaluate the aspect ranking and
recommendation tasks. In the aspect ranking task, we aim to sat-
isfy most users’ entity queries, and evaluate this task in a query-
independent fashion. We find that entropy-based methods achieve
the best performance compared to maximum likelihood and lan-
guage modeling approaches. In the aspect recommendation task,
we recommend other aspects related to the aspect currently being
queried. We propose two approaches based on semantic relatedness
and aspect transitions within user sessions and find that a combined
approach gives the best performance. As an additional experiment,
we utilize entity aspects for actual query recommendation and find
that our approach improves the effectiveness of query recommen-
dations built on top of the query-flow graph.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

Keywords
Entity aspects; Query intent; Semantic search

1. INTRODUCTION
With the proliferation of mobile devices, an increasing amount of

available structured data, and the development of advanced search
result pages, modern-day web search is increasingly geared to-
wards entity-oriented search [2, 26, 29]. A first step and common
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR ’15 August 09–13, 2015, Santiago, Chile.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3621-5/15/08 ...$15.00.
DOI: http://dx.doi.org/10.1145/2766462.2767724.

strategy to address such information needs is to identify entities
within queries, commonly known as entity linking [24]. Semantic
information that is gleaned from the linked entities (such as en-
tity types, attributes, or related entities) is used in various ways by
modern search engines, e.g., for presenting an entity card, showing
actionable links, and/or recommending related entities [3, 12, 19].

Entities are not typically searched for on their own, however,
but often combined with other entities, types, attributes/properties,
relationships, or keywords [29]. Such query completions in the
context of an entity are commonly referred to as entity-oriented in-
tents or entity aspects [27, 38]. In this paper we study the problem
of mining and ranking entity aspects in the context of web search.
In particular, we study four related tasks in this paper: (1) identi-
fying entity aspects, (2) estimating the importance of aspects with
respect to an entity, (3) ranking entity aspects with respect to a cur-
rent query and/or user session, and (4) leveraging entity aspects for
query recommendation.

The first step in identifying entity aspects involves extracting
common queries in the context of an entity and grouping them
based on their similarity. We perform this process offline and in-
vestigate three matching strategies for clustering queries into entity
aspects: lexical, semantic, and click-based. Gathering such entity
aspects can already be valuable on its own since they can be used
to, e.g., discover bursty or consistent entity intents or to determine
entity type-specific aspects [27].

In the next step we rank the obtained entity aspects for each en-
tity in a query-independent fashion using three distinct strategies.
This provides us with a mechanism to retrieve the most relevant
aspects for a given entity on its own, which, in turn, can be used
to, e.g., summarize the most pertinent information needs around an
entity or to help the presentation of entity-oriented search results
such as customized entity cards on SERPs [2].

The third task that we consider is aspect recommendation. Given
an entity and a certain aspect as input, recommend related aspects.
This task is motivated by the increasing proliferation of entity-
oriented interface elements for web search that can be improved
by, e.g., (re)ranking particular items on these elements. Recom-
mending aspects for an entity can also help users discover new and
serendipitous information with respect to an entity. We consider
two approaches to recommend aspects: semantic and behavioral.
In the semantic approach, relatedness is estimated from a semantic
representation of aspects. The behavioral approach is based on the
“flow” of aspect transitions in actual user sessions, modeled using
an adapted version of the query-flow graph [5, 6, 34].

In our final task we leverage entity aspects for actual query rec-
ommendation, i.e., helping users refine their query and/or to help
users accomplish a complex search task [11, 22]. Most methods for
query recommendation are similar to the behavioral approach men-

tioned above and based on query transitions within sessions. They
do not commonly utilize semantic information, however, which
may cause distinct but semantically equivalent suggestions. We
aim to ameliorate this problem by utilizing the semantic informa-
tion captured through the entity aspects for query recommendation.

We perform large-scale experiments on both a publicly avail-
able and a commercial search engine’s query log to evaluate our
proposed methods for mining, ranking, and recommending entity
aspects, as well as for recommending queries. We perform con-
trastive experiments using various similarity measures and ranking
strategies. We find that entropy-based methods achieve the best
performance compared to maximum likelihood and language mod-
eling on the task of entity aspect ranking. Concerning aspect rec-
ommendation we find that combining aspect transitions within a
session and semantic relatedness give the best performance. Fur-
thermore, we show that the entity aspects can be effectively utilized
for query recommendation.

Our main contributions can be summarized as follows:

• We introduce the task of mining, ranking, and recommending
entity aspects.

• We provide an in-depth analysis of the mined aspects.

• We propose two approaches to represent aspect relatedness,
and utilize them for recommendation.

• We propose a query recommendation method built on top of
the query-flow graph.

After a discussion of related work in Section 2, we formalize our
task in Section 3. We then detail our approaches to mining, ranking,
and recommending entity aspects in Section 4. A detailed account
of experiments and data is given in Section 5. We discuss the results
of our experiments in Section 6 and conclude in Section 7.

2. RELATED WORK
In this section we review related work around three main top-

ics: query intent mining, leveraging entity aspects for search, and
search task identification.

Intent mining deals with identifying clusters of synonymous or
strongly related queries based on intents, which are typically de-
fined as “the need behind a query.” An intent (sometimes also
referred to as an aspect) is commonly defined as a set of search
queries that together represent a distinct information need relevant
to the original search query. Methods for identifying intents are
typically based on the query itself, results returned by a retrieval
algorithm, clicked results, or any other actions by the user. Hu
et al. [13] leverage two kinds of user behavior for identifying query
“subtopics” (which can be interpreted as intents): one subtopic per
search and subtopic clarification by keyword. They propose a clus-
tering algorithm that can effectively leverage the two phenomena
to automatically mine the major subtopics of queries. They repre-
sent each subtopic as a cluster containing a number of URLs and
keywords. Cheung and Li [8] present an unsupervised method for
clustering queries with similar intent and producing patterns con-
sisting of a sequence of semantic concepts or lexical items for each
intent. They refer to this step of identifying patterns as intent sum-
marization. They then use the discovered patterns to automatically
annotate queries.

Other related work focuses on extracting attributes from queries,
either unsupervised or in the context of entities from a knowledge
base. For instance, Li et al. [16] propose a clustering framework
with similarity kernels to identify synonymous query intent “tem-
plates” for a set of canonical templates. They integrate signals from

multiple sources of information and tune the weights in an unsu-
pervised manner. Li et al. [17] on the other hand, solely aim to
discover alternative surface forms of attribute values. They pro-
pose a compact clustering framework to jointly identify synonyms
for a set of attribute values. In a similar vein, Pasca and Van Durme
[28] describe a method for extracting relevant attributes or quan-
tifiable properties for various classes of objects. They utilize query
logs as a source for these. Yin and Shah [38] propose an approach
for building a hierarchical taxonomy of generic search intents for
a class of named entities. Their proposed approach finds phrases
representing generic intents from user queries and organize these
phrases into a tree. They propose three methods for tree building:
maximum spanning tree, hierarchical agglomerative clustering, and
pachinko allocation model. These approaches are based on search
logs only. Moving beyond entity types, Lin et al. [19] introduce the
notion of active objects in which entity-bearing queries are paired
with actions that can be performed on entities. They pose the prob-
lem of finding actions that can be performed on entities as the prob-
lem of probabilistic inference in a graphical model that captures
how an entity-bearing query is generated.

Another body of related work deals with alternative presenta-
tions of search results, e.g., based on intents [9]. For instance,
Balasubramanian and Cucerzan [2] propose a method to generate
entity-specific topic pages as an alternative to regular search re-
sults. Similarly, Song et al. [32] present a model to summarize a
query’s results using distinct aspects. For this they propose “com-
posite queries” that are used for providing additional information
for the original query and its aspects. This works by comparatively
mining the search results of different component queries. Wu et al.
[37] mine latent query aspects based on users’ query reformulation
behavior and present a system that computes aspects for any new
query. Their system combines different sources of information to
compute aspects. They first discover candidate aspects for queries
by analyzing query logs. They then use a knowledge base to com-
pute aspects for queries that occur less frequently and to group as-
pects that are semantically related. Finally, Spina et al. [33] explore
the task of identifying aspects of an entity given a stream of mi-
croblog posts. They compare different IR techniques and opinion
target identification methods for automatically identifying aspects.

Search task identification deals with determining the specific task
a user is aiming to solve. Such information enables a search en-
gine to, e.g., suggest relevant queries and/or results. Jones and
Klinkner [14] formalize the notion of a search goal as an atomic
information need which results in one or more queries. They pro-
pose a method for the automated segmentation of a users’ query
stream into hierarchical units. While a search goal is atomic, a se-
ries of search goals then form a search missions (or complex search
tasks). Lucchese et al. [20] also aim to identify user search tasks
within query sessions. They cluster queries in order to find user
tasks, defined as a set of queries that is aimed towards the same in-
formation need. Later they expand user task detection across user
sessions [21], similar to so-called task trails and long-term search
tasks [18, 36]. Li et al. [15] model the temporal influence of queries
within a search session and then use this temporal influence across
multiple sessions to identify and label search tasks.

There exists a large body of work on query recommendation,
i.e., suggesting follow-up queries to a user, either in an ad hoc
fashion or in the context of a user’s session or task. Boldi et al.
[5] introduces the notion of query-flow graph for query sugges-
tion and Szpektor et al. [34] later expand this model to increase
coverage for long tail queries. Bonchi et al. [6] expand it even
further to improve coverage. Feild and Allan [10] show that us-
ing contextual information can improve query recommendation, as

Table 1: Glossary of the main notation used in this paper.
t a term
q a query
e an entity
s a query segment, i.e., a sequence of terms
a an entity aspect, consisting of zero or more query seg-

ments
Ae the set of entity aspects for e
d time span

long as the previous queries in the context involve a similar or re-
lated task. Hassan Awadallah et al. [11] capitalizes on this idea and
propose grouping together similar queries and then using them for
query recommendation for complex search tasks, similar to task-
specific recommendations [22]. Finally, Verma and Yilmaz [35]
extract common tasks in the context of an entity to improve retrieval
through query expansion and query term prediction. They extract
terms frequently appearing with an entity and aggregate this type
of information to an entity type level to obtain a dictionary of entity
tasks. They evaluate their work through query term prediction and
query expansion.

Our work is different in the following major ways. First, we ex-
tract entity aspects from query logs specifically. Second, we weight
these aspects and assign their importance with respect to an entity
on its own in an ad hoc fashion, i.e., without any user, session or
query-based information. Third, we learn their relatedness using
semantic and behavioral approaches. Finally, we propose an entity
aspect-based query recommendation algorithm building upon the
query-flow graph.

3. PROBLEM DEFINITION
In this paper, we study three related entity-oriented tasks that are

elemental in modern-day entity-oriented web search: identifying,
ranking, and recommending entity aspects. Although they build
on one another, we propose effective methods for each of them
separately since they are essential building blocks for information
access applications on their own as well.

In our methods and experiments we employ user interaction log
data in the form of queries and clicks. Formally, such logs can be
represented as a sequence of events where each event is an action
taken by a user. For each event we store a timestamp, a user ID,
and the type of action; these are limited to queries and clicks in our
current case. Furthermore, the logs are divided into time-ordered
sessions, h ∈ H , for each user where we use a common segmen-
tation method and begin a new session after a predefined period of
inactivity (30 minutes unless indicated otherwise).

We formulate the first task of identifying entity aspects as fol-
lows. Given an annotation function λe : Q → E that assigns
entities from the set of all entities E to queries, we detect “entity-
bearing queries,” i.e., queries Qe containing an entity e. Then, for
each entity, we mine a set of entity aspects: Ae = {a1, . . . , am}
from Qe representing the key search tasks in the context of that
entity. Table 1 details the main notation we use in this paper. We
employ the following definition of search tasks and entity aspects.

Given a “search task,” defined as an atomic informa-
tion need resulting in one or more queries, an “entity
aspect” is an entity-oriented search task, i.e., a set of
queries that represent a common task in the context of
an entity, grouped together if they have the same intent.

Once entity aspects have been identified we turn to ranking them.
That is, we estimate the importance of each aspect with respect to

the entity in a query-independent fashion and rank them accord-
ingly. The obtained ranking can be interpreted as a distribution of
prior probabilities over users’ information needs on the entity and
can be used on its own to, e.g., prioritize an entity display. For
entity aspect recommendation, we recommend related aspects in
the context of the entity given an entity-bearing query. We also
study this problem in a context-aware setting, incorporating previ-
ous queries within the search session. Finally, for query recommen-
dation we drop this restriction and include all queries in a session.

4. METHOD
In this section, we introduce our methods for each of the tasks

introduced in the previous section.

4.1 Identifying entity aspects
To mine aspects for an entity, we first need to identify all queries

Qe that contain entity e from the query log using an annotation
function λe. Since an entity may be referred to in various ways,
we need an effective method for identifying entity mentions in web
search queries. Since web search queries are typically short and
not grammatically correct [31], we rely on a fairly simple method
for entity linking that has been shown to obtain strong performance
on such texts [23, 24]. In particular, for each query we generate all
possible segmentations and link them to Wikipedia articles. Fol-
lowing [24], we use the CMNS method to generate a link for query
segment s:

CMNS(e, s) =
|Hs,e|∑
e′ |Hs,e′ |

,

where Hs,e denotes the set of all links with anchor text s which
points to target e in Wikipedia. We start with the longest possible
query segments and recurse to smaller n-grams in case no entity
mention is detected. In case a segment matches multiple entities,
we take the most “common” sense, i.e., the one with the highest
CMNS score. We do not specifically evaluate the performance of
our linking method for queries in this paper. However, in a recent
comprehensive comparison on entity linking for queries, CMNS
proved to be a very strong unsupervised baseline for this task [4].

Now that we have the set of all queries containing entity e, we
remove the mentions of e from the queries and use the remaining
segments as query contexts. If the query contains more than one en-
tity, we simply consider each entity on its own with the remainder
of the query as its context. In this manner we obtain Se, the set of
all context segments which appear with entity e. We then cluster the
contexts s ∈ Se such that context segments which have the same
intent are grouped together. We consider the following features for
clustering: lexical, semantic, and click similarity, covering spelling
differences/errors, related words/synonyms, and behavioral infor-
mation. Below we detail the specific methods for each.

Lexical similarity. We compute the lexical similarity between two
query contexts using the Jaro-Winkler distance, computed as fol-
lows:

lex(si, sj) =


0 if m = 0

1
3

(
m
|si|

+ m

|sj | +
m−m′

m

)
otherwise,

where m is the number of matching characters, and m′ is half the
number of transpositions between the two query context segments.

Semantic similarity. To compute the semantic similarity between
two query contexts si and sj , we use word2vec [25], sum the vec-
tors of each term within the queries, and determine the cosine dis-

tance of the resulting vectors:

sem(si, sj) =
z(si) · z(sj)
|z(si)| · |z(sj)|

, (1)

where z(s) is a function that calculates the semantic vector of s.

Click similarity. Beside lexical and semantic similarity, we also
utilize click similarity. In particular, for each query context s ∈ Se

we obtain all clicked hostnames for all queries containing e and s
and combine them into a click vector. We then compute the click
similarity between two query segments si and sj using their cosine
similarity:

click(si, sj) =
ci · cj
|ci| · |cj |

,

where ci and cj are click vectors of query si and sj , respectively.
The final segment similarity score is calculated by taking the max-
imum value of the similarity scores.

In order to cluster query contexts into entity aspects, we then em-
ploy Hierarchical Agglomerative Clustering (HAC) with complete
linkage. We flatten the obtained hierarchical clusters so that for ev-
ery object si, sj belonging to the same cluster, sim(si, sj) ≥ θ.
By the end of this step, we have obtained the entity aspects Ae in
the form of the query context clusters.

4.2 Ranking entity aspects
The main goal of entity aspect ranking is to estimate the im-

portance of each aspect in the context of an entity in a query-
independent fashion. Given an entity and its aspects as input, the
output of this task is a list of aspects that is ranked according to
their pertinence to the entity. We consider three methods for rank-
ing aspects given an entity. The first model is based on maximum
likelihood where we reward more frequently occurring aspects:

scoreMLE(a, e) =

∑
s∈a n(s, e)∑

a′
∑

s∈a′ n(s, e)
(2)

Here, n(s, e) denotes the number of times query segment s is queried
for in the context of e. Note that this method will not simply place
clusters with most members at a higher rank, since there might be
clusters with few members in which the members occur more fre-
quently than in a large cluster.

The second model uses entropy-based scoring where we reward
the most “stable” aspects using different time granularities includ-
ing months, weeks, and days. For instance, in the case of days we
partition the query log into daily chunks and count the number of
times completion s is queried for in the context of e on that day.
We then determine the entropy:

scoreEd(a, e) =
∑
d∈D

P (a|d, e) log2 P (a|d, e), (3)

where D is the set of all time units and P (a|d, e) the probability
of observing any s ∈ a in the context of e on time interval d (we
omit the minus sign in order to make these scores comparable).
In another variant we determine the joint entropy, incorporating a
factor p(d|e):

scoreEJd(a, e) =
∑
d∈D

P (a, d|e) log2 P (a, d|e), (4)

where P (a, d|e) is the joint probability of observing any s ∈ a and
time interval d in the context of e.

The third and final model is based on language modeling and
aims to rank aspects by how likely they are generated by a statisti-
cal language model based on a textual representation of the entity.

More formally, we introduce the following three variants:

scoreLM (a, e) =
∏
s∈a

P (s|θe)

scoreLM -avg(a, e) =
1

|a|
∑
s∈a

P (s|θe)

scoreLM -max(a, e) = max
s∈a

(P (s|θe)),

whereP (s|θe) is determined using maximum likelihood estimation
with Dirichlet smoothing:

P (s|θe) =
∏
t∈s

P (t|θe) =
∏
t∈s

n(t, r(e)) + µP (t)∑
t′ n(t

′, r(e)) + µ
.

Here, r(e) is the textual representation of e, for which we consider
either the entity’s Wikipedia article text, LMW , or the frequency-
weighted aggregation of all queries leading to a click on the en-
tity’s Wikipedia article, LMC. P (t) is the probability of term t
estimated from all textual representations of the type at hand. We
set µ to the default value of the average document length. Note that
the main difference with the MLE method introduced earlier lies in
the fact that the LM approaches are based on unigram term proba-
bilities whereas the MLE estimates operate at the segment level.

4.3 Recommending entity aspects
The goal of this task is to recommend aspects related to the en-

tity and aspect currently being queried. Given such an entity and
aspect pair as input, the output of this task is a ranked list of as-
pects. We consider two methods for recommending entity aspects:
a semantic and a behavioral approach. In the semantic approach,
we determine the aspects’ relatedness based on semantic similarity.
In the behavioral approach, we estimate the relatedness from user
sessions, inspired by the query-flow graph [5].

We use a graph-based representation for representing entity as-
pect relatedness. There are two motivations for this decision. First,
having a graph-based representation allows the relatedness of the
entity aspects to be computed offline. At retrieval time, we retrieve
the candidates and rank them based on previously estimated relat-
edness. Secondly, having this data encoded as graph allows ad-
vanced graph-based compression and recommendation techniques
to be applied in the future. We construct a different type of graph
for each approach: an aspect-semantic graph and an aspect-flow
graph, respectively.

4.3.1 Semantic approach
For the semantic approach we define the aspect-semantic graph

for an entity e as an undirected graph Gas = (V,L,w) where:

• The nodes are defined as the set of all aspects for e: V = Ae,

• L ⊆ V × V is the set of undirected edges, and

• w : L→ (0, 1) is a weighting function that assigns a weight
w to edges lij ∈ L .

We construct Gas using Algorithm 1 and compute the relatedness
between two aspects ai, aj using:

sem(ai, aj) =
z(ai) · z(aj)
|z(ai)| · |z(aj)|

, (5)

similar to (1). One main difference with (1) is that z is now com-
puted from the mean of the semantic vectors of all query contexts
belonging to a. If the relatedness score is above a threshold φ, we
construct an edge between aspect ai, and aj and assign score as
weight wij .

Algorithm 1 Constructing an aspect-semantic graph for e.
Input: Aspect list: Ae

Output: Aspect-semantic graph: G
1: G← initializeGraph(Ae)
2: for each ai ∈ A do
3: for each aj ∈ A do
4: w ← sem(ai, aj)
5: if w > φ then
6: e← createEdge(ai, aj , w)
7: G← G ∪ e
8: end if
9: end for

10: end for

Algorithm 2 Constructing an aspect-flow graph for e.
Input: Aspect list: Ae, User sessions: H
Output: Aspect-flow graph: G
1: G← initializeGraph(Ae)
2: for each ai ∈ A do
3: for each aj ∈ A do
4: w ← adj(H, ai, aj)
5: if w > ϕ then
6: e← createDirectedEdge(ai, aj , w)
7: G← G ∪ e
8: end if
9: end for

10: end for

4.3.2 Behavioral approach
The second approach is based on the query-flow graph. For-

mally, we define an aspect-flow graph as a directed graph Gaf =
(V,L,w) where:

• The set of nodes is V = Ae∪{s, t}, i.e., the set of all aspects
for e plus additional nodes s and t representing a starting
state and a terminal state,

• L ⊆ V × V is the set of directed edges, and

• w : L→ (0, 1) is a weighting function that assigns a weight
w to edges lij ∈ L.

Here, we estimate the relatedness between query aspects from user
sessions. We determine the relatedness from the adjacency of the
aspects:

adj(H, ai, aj) =
∑
h∈H

countAdjacent(h, ai, aj),

where countAdjacent(h, ai, aj) denotes the frequency of query
transitions of any query segment s ∈ ai to any segment in aj found
in the user session h, i.e., how often aj follows ai. We construct
the aspect-flow graph for each entity with Algorithm 2. First, we
construct a node for every aspect a that occurs in the user sessions,
H . Then, for every pair of aspects (ai, aj), we compute their ad-
jacency in H . We create an edge between two aspects ai and aj
if the adjacency is above a threshold ϕ. We assign the adjacency
count, normalized to transition probability, as the weight wij .

4.3.3 Generating aspect recommendations
We utilize the aspect-semantic graph Gas and aspect-flow graph

Gaf to generate recommendations for an input aspect a in the con-
text of entity e. In the first variant, we generate aspect recommen-
dations without a user session’s context as detailed in Algorithm 3.

Algorithm 3 Aspect recommendation.
Input: Aspect graph: G, Input aspect: a
Output: Ranked aspects: R
1: C ← getCandidatesFromNeighbors(G, a)
2: for each ca ∈ C do
3: score[ca]← getWeight(G, a, ca)
4: end for
5: R← rankCandidates(score)

Algorithm 4 Context-aware aspect recommendation.
Input: Aspect graph: G, Input aspect: a, Search context: S
Output: Ranked aspects: R
1: C ← getCandidatesFromNeighbors(G, a)
2: for each ca ∈ C do
3: score[ca]← getWeight(G, a, ca)
4: end for
5: for each p ∈ S do
6: scorep ← decay(a, p) ∗ getWeight(G, p, ca)
7: score[ca]← score[ca] + scorep
8: end for
9: R← rankCandidates(score)

Here, we retrieve candidate recommendations from all nodes ad-
jacent to a in G. For Gaf , we only retrieve neighboring nodes
connected by the outgoing links from a.

We combine the output of both methods to improve the cover-
age and effectiveness of our recommendations. First, we combine
the outputs with a simple round robin strategy, alternating the re-
trieval of recommendations from the behavioral and the semantic
approach, respectively. The intuition is that the semantic method
will be able to complement the behavioral method, since it will
have higher coverage if constructed with a relatively low threshold
φ. We also experiment with another combination method: convex
combination. We retrieve the scores generated by the behavioral
and semantic approaches and combine them with a weight λ:

score(a, a′) = λ · flow(a, a′) + (1− λ) · semantic(a, a′)

Since the scores are on a different scale, we perform min-max nor-
malization to each score before combining them. Due to our graph
construction process there might be cases where either method can
not provide any score; for these we simply assign a zero score.

In a variant of this method, we incorporate context-awareness by
looking at the previous queries in a user’s search session as detailed
in Algorithm 4. First, we retrieve the recommendation candidates
from the neighbors of a in G. Then we compute initial recommen-
dation scores for each of them and, lastly, we incorporate scores
from any previous aspect a′ within the search context S, dampened
based on their distance:

decay(a, a′) = δ|a−a′|,

where δ is a decay constant, and |a − a′| indicates the distance
between a and a′. The distance is the number of aspects queried by
the user between a and a′ in the current session S.

4.3.4 Generating query recommendations
So far, we have focused on problems and approaches for rank-

ing and recommending aspects involving the same entity. In this
section, we detail how we leverage entity aspects for query recom-
mendation in general. That is, recommending other entities, other
entity aspects, or regular/non-entity queries for a given query. We

Algorithm 5 Generating query recommendation (QFG+A).
Input: Input query: q, Query graph: G
Output: Ranked recommendations: R
1: for each q ∈ Q do
2: q∗ ← annotateQuery(q)
3: nq ← matchToNode(G, q∗)
4: S← getCandidates(G,n)
5: for each nca ∈ S do
6: score[nca]← getWeight(G,nq, nca)
7: end for
8: R← rankCandidates(score)
9: end for

complement a state-of-the-art query recommendation method—the
query-flow graph [5]—with information from the entity aspects.

We first apply the information from entity aspects when con-
structing the query-flow graph. We preserve all other queries that
are not entity queries, thus forming the query nodes as in a regu-
lar query-flow graph. For an entity-bearing query qe, we link all
mentions of an entity e. Next, if the query contains additional
query context, we extract the context segment s from qe. Then,
we match s to an appropriate aspect a in the aspect model Ae of
e. We perform this matching by finding a which contains s as its
cluster member. We collapse different mentions of the same entity
into one entity node and collapse semantically-equivalent queries
into one entity aspect node. This way, we obtain a “semanticized”
query-flow graph.

Lastly, we introduce our recommendation method, detailed in
Algorithm 5. For every input query, we perform entity linking of
the query to detect entity bearing queries (the annotateQuery func-
tion). Next, we match an entity query to a node (the matchToNode
function) with the similar procedure applied during graph construc-
tion. Regular queries will be matched straightforwardly. Lastly, we
retrieve recommendation candidates from adjacent nodes, scored
by their weights in the graph.

5. EXPERIMENTAL SETUP
In this section we detail our experimental setup, including the

data we use, the relevance assessments,1 and the metrics we em-
ploy. Our experiments below address the following research ques-
tions:

RQ1 When mining entity aspects, how do different similarity mea-
sures compare on the task of clustering queries in the context
of an entity?

RQ2 How do different aspect ranking methods compare on the
task of ranking entity aspects in a query-independent sce-
nario?

RQ3 How do the semantic and behavioral approaches compare on
the task of aspect recommendation?

RQ4 Does incorporating context improve aspect recommendation?

RQ5 Can we leverage the semantic information captured through
entity aspects to improve the effectiveness of query recom-
mendation built on top of the query-flow graph?

5.1 Experiments
To answer our research questions we set up 4 experiments, which

we describe below. In our experiments we test for statistical signif-
1Our relevance assessments and editorial guidelines are available
at http://ridhorei.github.io/entity-aspects/.

icance using a paired t-test, indicating significantly better or worse
results at the p < 0.01 level with N and H respectively.

Evaluating mining entity aspects. In this experiment, aimed at
answering RQ1, we evaluate the quality of the extracted entity as-
pects by manually evaluating the generated clusters. We use a set
of 50 entities sampled from user logs in a stratified fashion. That
is, we bias the sample such that more popular entities are more
likely to be included. We then extract the query completions for
each entity over a period of time from the dev-contexts collection
(introduced in the next section). To obtain ground truth data we
manually cluster the query segments by grouping those that repre-
sent the same aspect together. To evaluate the quality of each entity
aspect we employ commonly used cluster quality metrics: B-cubed
recall (B-recall), precision (B-precision), and F1 (B-F1) [1].

Evaluating ranking entity aspects. The second experiment is
aimed at answering RQ2. Since manually evaluating aspect rank-
ings for entities without any explicit query is not straightforward,
we resort to automatic evaluation. We propose an automatic evalu-
ation based on what we call “underspecified” entity queries, that is,
queries that contain only an entity. We rely on the assumption that
a good aspect ranking is one that, on average, best satisfies users
that issue such underspecified entity queries. Specifically, we con-
sider sessions that contain an underspecified entity query and aim
to predict any subsequent queries that again contain the entity, plus
additional query terms.

For this experiment we consider one month of query logs (the
test-aspect-ranking collection) that is disjoint from any log data
used for training). Because of this disjointness there might be as-
pects that our method is unable to predict, simply because they have
not been seen before. This includes spelling variants, reformula-
tions, and new aspects. In our experiments below we do keep them
as relevant samples in the evaluation data in order to mimic a real-
life setting as closely as possible.

We consider the following setup: we aim to predict the next
query a user issues in a session, only considering pairs of adja-
cent entity-bearing queries in the session where the second query
contains the same entity plus additional query terms. We then ob-
serve at which position our method ranks this subsequent query and
score it accordingly. Since we only have pairs of queries and thus
only one relevant suggestion for each, we report on mean reciprocal
rank (MRR) and success rate (SR).

Evaluating recommending entity aspects. The third experiment
is aimed at answering RQ3 and RQ4. Here, we evaluate the effec-
tiveness of recommending entities and aspects in the context of a
user session and constituent queries. We follow a similar evaluation
approach to the ranking task above, i.e., we consider the next query
in the session as the target to predict. As such we again report on
mean reciprocal rank (MRR) and success rate (SR).

Since detecting entity-dominated sessions is not trivial, we sim-
ulate them through the following procedure. First, we extend the
session demarcation boundary, effectively merging the sessions be-
longing to the same user within a 3-day timeframe (the test-aspect-
recommendation collection). Then, we consider the first entity
within these extended user sessions as the reference entity and eval-
uate the recommendation methods by their effectiveness in predict-
ing subsequent aspects of the entity throughout the remainder of the
session. This setup reflects recommending related entity aspects for
complex search tasks in the context of an entity.

Evaluating query recommendation. Our fourth and final experi-
ment addresses query recommendation and is aimed at answering
RQ5. Here we evaluate actual query pair predictions, following
the automatic evaluation method from [34]. We sample 1,000,000

http://ridhorei.github.io/entity-aspects/

query sessions from the query logs of a commercial search en-
gine (the test-query-recommendation collection) and extract pairs
of adjacent queries from the sessions. Queries belonging to same
entity aspect are treated as equivalent queries during evaluation.
We evaluate this approach in two configurations: looking at all
queries within the sessions (all-pairs), and using only the first and
last queries (first-last pairs). Furthermore, we also differentiate be-
tween using all query pair occurrences (allowing possible dupli-
cates of popular queries pairs) and using distinct occurrences only.
Our main evaluation metrics for this experiment are again mean
reciprocal rank (MRR) and success rate (SR). To gain additional
insights, we also look at the fraction of correct predictions at dif-
ferent recommendations cut-off levels: 100 and 10.

5.2 Experimental data and settings
We use two sources of data for training and testing, including

user logs of the Yahoo web search engine as well as the AOL query
logs. From the former we sample a number of datasets. All the
development and test datasets that we use are disjoint, i.e., they
are sampled from non-overlapping time periods. The dev-contexts
dataset is a large, 1-year query log sample containing queries that
we use to build the full aspect model for our set of entities. The
dev-clicks dataset is a 1-month sample used to compute click sim-
ilarity for the context terms. We build our query-flow graph and
the aspect-flow graph on the dev-flow dataset (a 1-month sample).
The test datasets, test-aspect-ranking, test-aspect-recommendation,
test-query-recommendation, are all 1-month samples and unseen
query logs that are used in our automatic evaluation methods for
our second, third, and fourth experiment, respectively. In addition,
we also utilize the publicly available AOL dataset in our second
experiment. This last dataset includes queries sampled from March
2006 until May 2006.

We define navigational queries as queries that are in the top-40%
in terms of the number of pageviews and that also lead to a click
on the top search result in at least 40% of the cases. We detect and
subsequently discard navigational queries based on this heuristic.

We perform entity linking and context term extraction using the
method described in Section 4.1. Below we focus on Wikipedia
entities and we leave using other entity repositories for future work.
In order to reduce data sparseness we remove entities that occur in
less than 100 queries. This results in a set of about 75k entities of
interest.

Our approach involves several parameters. The first parameter,
θ is the similarity threshold used for clustering. From a prelimi-
nary experiment on held-out data, we obtain the optimal value of
θ = 0.75. For the minimum relatedness score in the construction
of the aspect-semantic graph, we set φ = 0.1. Following the com-
mon practice in constructing a query-flow graph [5, 7], we retain
only transitions that appear at least two times, thus ϕ = 1. After
a preliminary experiment, we set λ = 0.85 when combining the
semantic and flow scores. The decay parameter is set to δ = 0.85.

6. EXPERIMENTAL RESULTS
In this section we answer the research questions presented in the

previous section.

6.1 Mining aspects
Our first experiment concerns mining entity aspects. We start by

evaluating the quality of each cluster and then zoom in on the as-
pects generated during the mining process. Table 2 presents the re-
sults of using different matching strategies to cluster query context
terms into entity aspects. Recall that we perform complete-linkage
clustering with a parameter θ as threshold for grouping objects.

Table 2: Entity aspect mining results. Significance is tested
against the lexical method (row 1).
Method B-Recall B-Precision B-F1

Lexical 0.9164 0.8258 0.8338
Semantic 0.9452N 0.7744H 0.8117H

Click 0.8977 0.6666H 0.6880H

Lexical + semantic 0.9216 0.8629N 0.8607N

Lexical + click 0.8480H 0.8155H 0.7842H

Semantic + click 0.8686H 0.7788H 0.7680H

Lexical + semantic + click 0.8558H 0.8465N 0.8098H

Table 3: Entity aspect mining: clustering output for entity Paris
Saint-Germain F.C..

Cluster Context terms

1 real, real madrid vs, vs real madrid, real madrid
2 results
3 live, live streaming, live stream
4 guingamp
5 match
6 highlights
7 transfert
8 2013
9 monaco, monaco direct, monaco streaming

10 om, regarder om
11 streaming, en streaming
12 barca, barca vs
13 barcelona, barcelone
14 barcelona vs
15 anderlecht

First, we look at the results of individual similarity measures. As
we can see, using just lexical matching already results in a fairly
good B-cubed recall and precision score. This can be explained
by the fact that the lexical matching strategy allows minor changes
caused by spelling variants or spelling errors, and is successful in
performing clustering on these cases. Semantic similarity achieves
higher recall at the cost of precision. This means that the clustering
method with the current threshold clusters the object aggressively,
for example, grouping aspects such as “daughter” and “mother”
together. Click similarity has the lowest precision compared to the
other two measures for reasons that we will explain below.

Although lexical similarity provides a good start, this strategy
fails to group queries that are semantically related. Thus, combin-
ing it with semantic similarity improves recall and precision. This
combination proves to be the best performing one, compared to us-
ing individual measure and all measures.

Adding click similarity with our current strategy does not work
well. Upon closer inspection, we find that a lot of unrelated query
contexts point to the same host name. For example, contexts related
to an entertainer’s news are often directed to the same entertain-
ment site. Therefore, combining clicks with other measures tends
to brings down the performance, in particular precision.

Table 3 shows sample output generated by our aspect mining
method for the entity Paris Saint-Germain F.C. (a Parisian soc-
cer club). Our manually created clusters are shown in Table 4.
The aspect mining produces more clusters than the ground truth.
The method fails to group “barca, barca vs, barcelona, barcelone,
barcelona vs.” instead making three clusters from them. With such
short strings, the pairwise Jaro-Winkler distance between two ob-
jects is bigger than the threshold, thus preventing the objects from

Table 4: Entity aspect mining: clustering ground truth for en-
tity Paris Saint-Germain F.C..

Cluster Context terms

1 read, real madrid vs, vs real madrid, real madrid
2 results
3 live, live streaming, live stream, streaming, en stream-

ing
4 guingamp
5 match
6 highlights
7 transfert
8 2013
9 monaco, monaco direct, monaco streaming

10 om, regarder om
11 barca, barca vs, barcelona, barcelone, barcelona vs
12 anderlecht

being clustered with complete linkage. Also, in some cases the
lexical clustering method groups queries that should not be clus-
tered together because they represent different intent/vertical. For
instance, two separate clusters (“monaco”) and (“monaco direct,
monaco streaming”) should be created instead of putting them to-
gether in a single cluster.

Next, we look at the different types of aspect that occur in the
context of our example entity Paris Saint-Germain F.C.. Many
of the aspects refer to a fairly common transactional intent for a
football club such as “live streaming”. Other sets of intents are re-
lational, which concerns the relationship of the topic entity with
other entities (in this case, other football clubs). Another set of
intents are categorical, that is, they deal with type-related intents,
e.g., “results,” “match” “highlights” and “transfers.” The last as-
pect we observe concerns attempts to find something related to a
certain time point, such as “2013”.

To conclude this section, we formulate our answer to our first
research question RQ1. Combining lexical and semantic similar-
ity measures performs best on the task of clustering query context
terms for entity aspect mining and we select this method for the re-
maining experiments. Integrating click similarity tend to hurt per-
formance, particularly precision.

6.2 Ranking entity aspects
Our second experiment evaluates the importance of each aspect

with respect to the entity in a query-independent setting. The re-
sults of this experiment is displayed in Tables 5 and 6. From these
tables we observe consistent results across the two datasets. First,
the simple maximum likelihood approach already performs quite
well, thus providing a good baseline. The entropy-based methods,
in particular using month as time units, achieve the best perfor-
mance overall, outperforming maximum likelihood and language
modeling approaches. We further observe that the absolute scores
on the AOL dataset are lower overall which is mainly due to the dis-
jointness nature of the query logs that we use to mine the aspects
with the queries in the AOL logs.

We use different granularities of time-slices, and experiment with
two variant of entropy-based methods. For the baseline MLE ap-
proach, we simply use the aspect popularity over the whole range
of our main query logs that is used for mining (1 year of data). The
different granularities do not really show much difference in terms
of performance, although computing entropy on the monthly data
provides a slight edge.

Table 5: Entity aspect ranking: results on test-aspect-ranking.
Significance is tested against the MLE baseline (row 1).

MRR SR

MLE 0.1931 0.1110

Edays 0.2013N 0.1149N

Eweeks 0.2015N 0.1139N

Emonths 0.2031N 0.1162N

EJdays 0.2020N 0.1208N

EJweeks 0.2048N 0.1259N

EJmonths 0.2052N 0.1262N

LMW 0.0431H 0.0135H

LMWavg 0.0657H 0.0200H

LMWmax 0.0583H 0.0170H

LMC 0.0488H 0.0176H

LMCavg 0.0859H 0.0313H

LMCmax 0.0755H 0.0259H

There are several possible reasons why language modeling does
not work well for this task. First, it is the only approach that
does not include any query popularity or frequency information.
Secondly, what users search for does not always align with what
Wikipedia editors may put in a Wikipedia article—which is in line
with previous research [37]. This may result in a so-called knowl-
edge base gap where a user is searching for an important fact that
is not included on a Wikipedia article yet. In our case, this may re-
sult in low scores with the language modeling approach. Lastly, the
fact that the language model based approaches are unigram-based,
while the other methods are segment-based might also contribute
to the lower scores.

We also considered a second experimental variant where we look
for entity-bearing query pairs in the whole session. That is, we
discard any non-entity bearing queries in between. We find that the
scores using this variant are comparable to those reported here.

It is important to note that we compare a different and diverse set
of features, with appropriate functions defined for each type of fea-
tures. However, since the previous step (clustering query contexts
into aspects) are kept constant across method, we argue that this
comparison is still valuable despite having to compare the combi-
nation of features and functions simultaneously. The end-to-end
aspect ranking scores should be comparable.

In conclusion, the results show that ranking entity aspects can
be done successfully, resulting in sensible absolute MRR and SR
scores and we find that entropy-based methods are the best in rank-
ing entity aspects in a query-independent scenario.

6.3 Recommending aspects
Our third experiment evaluates the quality of recommending en-

tity aspects within a session, comparing the semantic and behav-
ioral approaches. The results are shown in Tables 7 and 8. Overall,
we see that the behavioral aspect-flow approach outperforms the
purely semantic approach. When combined, they give the best per-
formance. In our experiments, we experiment with a round-robin
and a convex approach to combine the results.

Upon looking at the graphs created by both methods, we see that
the semantic method tends to generate larger graphs, thus attaining
more coverage. This is not surprising since the flow graph is only
constructed with a single month of data. Despite the sparsity and
lack of coverage, the behavioral flow-based approach still manages
to outperform the semantic approach, providing better quality rec-

Table 6: Entity aspect ranking: results on the AOL dataset.
Significance is tested against the MLE baseline (row 1).

MRR SR

MLE 0.0647 0.0340

Edays 0.0710N 0.0383N

Eweeks 0.0712N 0.0376N

Emonths 0.0709N 0.0376N

EJdays 0.0684N 0.0383N

EJweeks 0.0692N 0.0394N

EJmonth 0.0692N 0.0395N

LMW 0.0328H 0.0132H

LMWavg 0.0457H 0.0190H

LMWmax 0.0426H 0.0170H

LMC 0.0341H 0.0146H

LMCavg 0.0499H 0.0219H

LMCmax 0.0466H 0.0195H

Table 7: Aspect recommendation: results. Significance is tested
against row 1.

Method MRR SR
Aspect-semantic 0.0431 0.0244
Aspect-flow 0.0602N 0.0451N

Aspect-combined-rr 0.0674N 0.0486N

Aspect-combined-convex (λ = 0.85) 0.0650N 0.0465N

ommendations overall. Both combination approaches succesfully
improve over the individual approaches.

As for incorporating user session context (Table 8), we observe
that the semantic approach gains a small improvement by incorpo-
rating previous queries in the search context. However, the flow-
based approach performs slightly worse when previous query is
taken into account. This is related to the sparsity/lack of transi-
tion data on the flow-based approach. The size of the context have
little effect in the current adjancency-based recommendation setup.
In conclusion, we find that the behavioral approach is better than
the semantic approach for recommending entity aspects, and they
can be combined to generate better recommendations.

6.4 Recommending queries
In this section we investigate whether our aspect model can help

to complement the query-flow graph for generic query recommen-
dation. Table 9 shows the result of predicting all queries within the
sampled user sessions (all-pairs). Table 10 shows the results of us-
ing the first query as input to predict only the last query of a session
(which can be considered as yielding the desired results).

In the all-pairs prediction setup, we see that the aspect-based
query recommendation method (labeled QFG+A in the table) suc-
cessfully improves upon the baseline query-flow graph in terms of
predictions coverage and ranking. The improvement is small, but
consistent and significant across the two different configurations of
our experiment. Overall, we achieve around 1% improvement on
the correct prediction’s coverage. For ranking, our method achieves
slightly better mean reciprocal rank and average position of the tar-
get query (averaged for correct predictions at the top-100). Con-
sidering the large number of queries, these improvements are quite
substantial. The improvements become more pronounced as we
look at the unique query occurrences rather than all occurrences.

We notice consistent results in the first-last experiment also. Im-
provements in terms of prediction coverage are around 1%, while
the ranking also shows consistent and significant improvements.

Table 8: Aspect recommendation: results of context aware ex-
periment where m denotes the context size, i.e., the number of
queries used as context. Significance is tested against row 1 of
each group.

Method MRR SR
Aspect-semantic 0.0431 0.0244
CA-aspect-semantic (m = 3) 0.0436N 0.0248N

CA-aspect-semantic (m = 10) 0.0436N 0.0248N

Aspect-flow 0.0602 0.0451
CA-aspect-flow (m = 3) 0.0583H 0.0438H

CA-aspect-flow (m = 10) 0.0583H 0.0438H

Table 9: Query recommendation: results on the all-pairs
dataset for each configuration.

all occurrences

QFG QFG+A

% pairs in all 0.111 0.123
% pairs in top-100 0.076 0.084
% pairs in top-10 0.042 0.047
% pairs in top-1 (SR) 0.015 0.016
MRR 0.024 0.026
avg. position 20.38 20.09

unique occurrences

QFG QFG+A

% pairs in all 0.108 0.130
% pairs in top-100 0.070 0.088
% pairs in top-10 0.039 0.048
% pairs in top-1 (SR) 0.013 0.015
MRR 0.021 0.026
avg. position 20.57 20.01

7. CONCLUSION
In this paper we have considered common information access

tasks in the context of entity-oriented web search. In particular,
we have developed and evaluated methods for mining entity as-
pects, ranking their importance, and recommending them directly
or leveraging them for query recommendation. We have done so
through linking entities within queries, extracting the query con-
text terms, and clustering them together into entity aspects if they
refer to the same intent.

The first step, mining entity aspects involves extracting common
queries in the context of an entity and grouping them based on their
similarity. We find that combining the lexical and semantic match-
ing strategies performs best for this task. In the next step we rank
the obtained entity aspects for each entity in a query-independent
fashion using three strategies: maximum likelihood, entropy, and
language modeling. In the maximum likelihood method, we reward
more frequently occurring aspects. In the entropy-based methods,
we aim to reward aspects that are stable over time. With the lan-
guage modeling methods, we estimate the probability that the as-
pect is generated from a statistical unigram language model of the
entity. We find that the entropy-based methods yield the best per-
formance. The third task that we consider is aspect recommenda-
tion. That is, given an entity and a certain aspect as input, recom-
mend related aspects. For this we consider two approaches, seman-
tic and behavioral, and find that the latter provides superior results.
In our final task we leverage entity aspects for actual query recom-
mendation. Here we normalize a query graph into a semantic query
graph, and use the entity aspects as an additional source of infor-

Table 10: Query recommendation: results on the first-last
dataset for each configuration.

all occurrences

QFG QFG+A

% pairs in all 0.147 0.165
% pairs in top-100 0.097 0.110
% pairs in top-10 0.055 0.062
% pairs in top-1 (SR) 0.019 0.021
MRR 0.031 0.034
avg. position 19.20 18.98

unique occurrences

QFG QFG+A

% pairs in all 0.104 0.126
% pairs in top-100 0.062 0.079
% pairs in top-10 0.031 0.041
% pairs in top-1 (SR) 0.009 0.011
MRR 0.016 0.021
avg. position 21.84 20.90

mation for query recommendation. We find that resolving entities
and grouping queries into aspects helps to improve query recom-
mendation in a semantic way, by addressing the sparsity of queries
and improving the diversity of recommendations.

As to future work, we would like to extend the study in the fol-
lowing directions. First, we would like to experiment with more
advanced graph-based compression and recommendation methods
for query recommendation. Secondly, we would like to incorpo-
rate more features and study the performance of aspect mining in
an even larger-scale setting. Next, just as some entity relations are
known to be fluent [30], we would like to study the temporality
of the entity aspects. Finally, we would like to the see whether
the different aspect ranking methods perform differently per entity
type, or per different query triggers, distinguishing e.g., actual user
inputs with auto-completions and related searches.

Acknowledgments. This research was supported by the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment nr 312827 (VOX-Pol), the Netherlands Organisation for Scientific Re-
search (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10,
640.006.013, 612.066.930, CI-14-25, SH-322-15, Amsterdam Data Sci-
ence, the Dutch national program COMMIT, the ESF Research Network
Program ELIAS, the Elite Network Shifts project funded by the Royal
Dutch Academy of Sciences (KNAW), the Netherlands eScience Center un-
der project nr 027.012.105, the Yahoo! Faculty Research and Engagement
Program, the Microsoft Research PhD program, and the HPC Fund.

8. REFERENCES
[1] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo. A comparison of

extrinsic clustering evaluation metrics based on formal constraints.
Inf. Retr., 12(4):461–486, 2009.

[2] N. Balasubramanian and S. Cucerzan. Topic pages: An alternative to
the ten blue links. In IEEE-ICSC 2010, 2010.

[3] R. Blanco, B. B. Cambazoglu, P. Mika, and N. Torzec. Entity
recommendations in web search. In ISWC ’13, 2013.

[4] R. Blanco, G. Ottaviano, and E. Meij. Fast and space-efficient entity
linking for queries. In WSDM ’15, 2015.

[5] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna.
The query-flow graph: Model and applications. In CIKM ’08, 2008.

[6] F. Bonchi, R. Perego, F. Silvestri, H. Vahabi, and R. Venturini.
Efficient query recommendations in the long tail via center-piece
subgraphs. In SIGIR ’12, 2012.

[7] I. Bordino, G. De Francisci Morales, I. Weber, and F. Bonchi. From
Machu Picchu to rafting the Urubamba River: Anticipating
information needs via the entity-query graph. In WSDM ’13, 2013.

[8] J. C. K. Cheung and X. Li. Sequence clustering and labeling for
unsupervised query intent discovery. In WSDM ’12, 2012.

[9] A. Chuklin, P. Serdyukov, and M. de Rijke. Using intent information
to model user behavior in diversified search. In ECIR ’13, 2013.

[10] H. Feild and J. Allan. Task-aware query recommendation. In SIGIR
’13, 2013.

[11] A. Hassan Awadallah, R. W. White, P. Pantel, S. T. Dumais, and
Y.-M. Wang. Supporting complex search tasks. In CIKM ’14, 2014.

[12] L. Hollink, P. Mika, and R. Blanco. Web usage mining with semantic
analysis. In WWW ’13, 2013.

[13] Y. Hu, Y. Qian, H. Li, D. Jiang, J. Pei, and Q. Zheng. Mining query
subtopics from search log data. In SIGIR ’12, 2012.

[14] R. Jones and K. L. Klinkner. Beyond the session timeout: Automatic
hierarchical segmentation of search topics in query logs. In CIKM
’08, 2008.

[15] L. Li, H. Deng, A. Dong, Y. Chang, and H. Zha. Identifying and
labeling search tasks via query-based hawkes processes. In SIGKDD
’14, 2014.

[16] Y. Li, B.-J. P. Hsu, and C. Zhai. Unsupervised identification of
synonymous query intent templates for attribute intents. In CIKM
’13, 2013.

[17] Y. Li, B.-J. P. Hsu, C. Zhai, and K. Wang. Mining entity attribute
synonyms via compact clustering. In CIKM ’13, 2013.

[18] Z. Liao, Y. Song, L.-w. He, and Y. Huang. Evaluating the
effectiveness of search task trails. In WWW ’12, 2012.

[19] T. Lin, P. Pantel, M. Gamon, A. Kannan, and A. Fuxman. Active
objects: Actions for entity-centric search. In WWW ’12, 2012.

[20] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei.
Identifying task-based sessions in search engine query logs. In
WSDM ’11, 2011.

[21] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei.
Discovering tasks from search engine query logs. ACM Trans. Inf.
Syst., 31(3):14:1–14:43, Aug. 2013.

[22] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei.
Modeling and predicting the task-by-task behavior of search engine
users. In OAIR ’13, 2013.

[23] E. Meij, M. Bron, L. Hollink, B. Huurnink, and M. de Rijke.
Mapping queries to the linking open data cloud: A case study using
dbpedia. Web Semantics: Science, Services and Agents on the World
Wide Web, 9(4):418–433, 2011.

[24] E. Meij, W. Weerkamp, and M. de Rijke. Adding semantics to
microblog posts. In WSDM 2012, 2012.

[25] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.
Distributed representations of words and phrases and their
compositionality. CoRR, abs/1310.4546, 2013.

[26] P. Pantel and A. Fuxman. Jigs and lures: Associating web queries
with structured entities. In ACL ’11, 2011.

[27] P. Pantel, T. Lin, and M. Gamon. Mining entity types from query
logs via user intent modeling. In ACL’12, 2012.

[28] M. Pasca and B. Van Durme. What you seek is what you get:
Extraction of class attributes from query logs. In IJCAI’07, 2007.

[29] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object retrieval in the
web of data. In WWW ’10, pages 771–780, 2010.

[30] R. Reinanda and M. de Rijke. Prior-informed distant supervision for
temporal evidence classification. In Proceedings of COLING 2014,
2014.

[31] U. Sawant and S. Chakrabarti. Learning joint query interpretation
and response ranking. In WWW ’13, 2013.

[32] W. Song, Q. Yu, Z. Xu, T. Liu, S. Li, and J.-R. Wen. Multi-aspect
query summarization by composite query. In SIGIR ’12, 2012.

[33] D. Spina, E. Meij, M. de Rijke, A. Oghina, M. T. Bui, and M. Breuss.
Identifying entity aspects in microblog posts. In SIGIR ’12, 2012.

[34] I. Szpektor, A. Gionis, and Y. Maarek. Improving recommendation
for long-tail queries via templates. In WWW ’11, 2011.

[35] M. Verma and E. Yilmaz. Entity oriented task extraction from query
logs. In CIKM ’14, 2014.

[36] H. Wang, Y. Song, M.-W. Chang, X. He, R. W. White, and W. Chu.
Learning to extract cross-session search tasks. In WWW ’13, 2013.

[37] F. Wu, J. Madhavan, and A. Halevy. Identifying aspects for
web-search queries. J. Artif. Int. Res., 40(1):677–700, 2011.

[38] X. Yin and S. Shah. Building taxonomy of web search intents for
name entity queries. In WWW ’10, 2010.

	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Method
	4.1 Identifying entity aspects
	4.2 Ranking entity aspects
	4.3 Recommending entity aspects
	4.3.1 Semantic approach
	4.3.2 Behavioral approach
	4.3.3 Generating aspect recommendations
	4.3.4 Generating query recommendations

	5 Experimental Setup
	5.1 Experiments
	5.2 Experimental data and settings

	6 Experimental Results
	6.1 Mining aspects
	6.2 Ranking entity aspects
	6.3 Recommending aspects
	6.4 Recommending queries

	7 Conclusion
	8 References

