
Deploying Lucene on the Grid

Edgar Meij and Maarten de Rijke
ISLA, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam
The Netherlands

emeij,mdr@science.uva.nl

ABSTRACT
We investigate if and how open source retrieval engines can
be deployed in a grid environment. When comparing grids
to conventional distributed IR, the lack of a-priori knowledge
about available nodes is one of the most significant differ-
ences. On top of that, it is also unknown when a particular
node has time and resources available and starts a submit-
ted job. Therefore, conventional methods such as RMI are
not directly usable and we propose a different approach, us-
ing middleware designed specifically for grids. We describe
GridLucene, an extension of the open source engine Lucene
with grid-specific classes, based on this middleware. We
report on an initial comparison between GridLucene and
Lucene, and find a minor penalty (in terms of execution
time) for grid-based indexing and a more serious penalty for
grid-based retrieval.

The used middleware can gather a set of physical resources
to form a single logical resource with some abstract prop-
erties. The user-definable properties can be used during
indexing and retrieval to let GridLucene know which files it
needs to access. By using this kind of semantic information,
grid nodes can “discover” which indices exist on the grid
and which particular documents need to be indexed.

GridLucene is available for downloading under the same li-
cense as Lucene.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Measurement, Performance, Experimentation

Keywords
Grid, grid computing, metadata, parallel indexing

OSIR 2006August 6-11, 2006, Seattle, USA

1. INTRODUCTION
Grids are an emerging infrastructural technology for resource
sharing. They enable the collaborative use of computational
resources (commonly referred to as nodes), towards one or
more common goals. Distributed or parallel computing is
not a novelty, but there are significant differences when com-
pared to grids. Within clustered computing, the individ-
ual components are tightly coupled, usually located near to
each other and very homogeneous. Within a distributed ap-
proach, the homogenity is much less guaranteed, individual
elements are loosely coupled and they can be geographi-
cally apart. Grids are like distributed systems, but they can
cross national, as well as organizational boundaries. Grids
also have interesting new properties that on the one hand
ask for new solutions but can, on the other hand, also have
interesting new potential.

The use of grids is still gaining in popularity and the en-
abling technologies are maturing as well. Increasingly, grids
are being deployed in multi-site research projects and/or in
projects where large amounts of data need to be stored or
processed [31].

In this paper, we address the exploratory question if and
how (open source) search engines can be deployed in a grid
environment. Within our research group we make heavy use
of Lucene [29], the well-known open source search engine,
for various retrieval experiments and in various ways.1 The
performance of Lucene decreases with the ever-increasing
size of document collections. How would it perform in a grid
environment? What, if anything, is the difference between
deploying an engine such as Lucene in a more conventional
setup and deploying it in a grid environment? Are there any
special challenges, benefits, or disadvantages? A significant
difference between a grid-based approach and conventional
distributed information retrieval for example, is the lack of
a-priori knowledge about available nodes in a grid. This
makes load balancing at runtime difficult, something which
is still an ongoing research topic [1, 35]. Indeed, on the grid,
it is usually not known in advance when a particular node

1We have used Lucene in a local fashion for example, with
either a single index or with multiple indices for our Mood-
Views project [27] and have also done experiments with a
distributed setup. We have even augmented Lucene with
an in-house developed Language Modeling extension [26]
to replace the default similarity calculations. Faced with
retrieval tasks that require substantial amounts of storage
space, such as the TREC Terabyte retrieval track [10, 9], we
turn to grids.



Figure 1: Organizations, sharing resources through
Virtual Organizations.

starts a certain job, how many resources it has available,
and where it is located—because of this, methods such as
RMI (Remote Method Invocation) are not directly usable.
To be able to take advantage of the distributed nature of
grids, we propose a different approach, using grid-specific
storage middleware. To evaluate this approach, we create a
number of grid-specific implementations around Lucene.

The rest of this paper is organized as follows. Before we
describe our approach in more detail, we first provide some
background on grids (Section 2) and discuss several key com-
ponents, common to most (institutional) grids, in Section 3.
In Section 4 we describe the changes we made to Lucene
and some additional implementations. In Section 5 we de-
scribe the setup used to evaluate indexing and searching
performance of our grid-based solution. In particular, we
compare indexing and retrieval speeds of our grid-enabled
Lucene with a “traditional,” locally running Lucene instal-
lation. The results can be found in Section 6, and concluding
remarks are in Section 7.

2. BACKGROUND
A grid enables the integrated use of resources, which are
typically owned by multiple organizations and/or individu-
als and is in fact a system consisting of distributed, but con-
nected resources [12]. It also encompasses software and/or
hardware that provides and manages logically seamless ac-
cess to those resources [13, 24]. Grids can be roughly classi-
fied in two categories: institutional grids (IG’s) and global
computing or P2P (GCP) systems [3, 23, 11].

GCP systems typically harvest the computing power pro-
vided by individual computers, using otherwise unused band-
width and computing cycles in order to run very large and
distributed applications [22, 15]. Some examples include
SETI@home [38], LookSmart’s Grub [28] (a voluntary initi-
ave to crawl the Internet in a distributed fashion), and Zeta-
Grid [40]. ZetaGrid is an attempt to verify Riemann’s Hy-
pothesis using grid technology, with a reported peak perfor-
mance rate of around 7000 GFLOPS. There are also (open
source) packages such as XtremWeb [11], and Q2ADPZ [30]
which allow to setup, deploy and run GCP projects. BOINC
(the Berkeley Open Infrastructure for Network Comput-
ing) is another open source platform for public-resource dis-

tributed computing [3] and currently the enabling system
for SETI@home, LHC@home, Einstein@home, Climatepre-
diction.net, and many more.

Our work however, takes place in an IG environment. IGs
cross organizational boundaries and are based on the virtual
organization (VO) paradigm [20, 17, 21]. A VO is a dynamic
collection of resources and users unified by a common goal
and potentially spanning multiple administrative or organi-
zational domains [18]. A figure depicting the notion of VOs
is given in Figure 1 (adapted from a figure in [32]). IG’s
involve intensive computations and very large amounts of
data, that also require secure resource sharing for which the
current Internet infrastructure is unadequate. While GCP
systems can be categorized as using weak to no authentica-
tion, IGs use strong authentication systems, based on the
VO paradigm [19, 39]. They target broad scientific collab-
orations where various individuals, groups and institutions
perform diverse calculations. There is considerable variation
in the range of scientific grid applications, depending on the
interest and scale of the community in question. A practical
example of the use of an IG is the numerical solution of the
long-open “nug30” quadratic optimization problem [33]. As
opposed to mostly single machines within GCP systems, an
IG resource might also be a cluster of machines, a storage
system, database, or any other scientific instrument of con-
siderable value that is administered in an organized fashion.

3. GRID COMPONENTS
In this section we describe the institutional grid environment
in which we work and in which our experiments take place.
We start out by describing the general environment and then
zoom in on a particular kind of storage middleware and job
submission details.

3.1 General
The construction of an institutional grid requires the es-
tablishment of standards for infrastructure, communication
protocols and application programming interfaces [20, 37].
The Open Grid Services Architecture (OGSA) defines such
a standard service-oriented IG framework [21]. The goal of
OGSA is to standardize practically all the services one finds
in an IG, such as VO/user management, security, resource
management, job management, and data services. The im-
plementation of these services provides a virtualization of
a grid’s resources and form an IG’s middleware. Today,
the Globus Toolkit [16, 25] is the de facto standard for any
IG’s middleware, with the Globus Toolkit 4 (GT4) being the
most recent version [14]. GT4 is an open source toolkit and
a realization of the OGSA requirements. It consists of ser-
vices, programming libraries, and development tools which
can be used to create IG-based applications [32].

Since there is no persistent storage on any grid node, spe-
cific middleware has been developed to accomodate storage
requirements across an IG. Within GT4 there are several
data management components such as GridFTP [20, 2] and
OGSA-DAI (a service-based architecture for database ac-
cess over the grid) [4]. Another implementation of a storage
middleware solution will be presented in the next section.



3.2 Storage Resource Broker
The Storage Resource Broker (SRB) is a grid storage im-
plementation, which includes data abstraction as well as
metadata handling [5]. It provides a uniform API to het-
erogenous storage resources in a distributed fashion and has
been used succesfully in various applications and fields, such
as biomedicine, astronomy, digital libraries, and more [31].

SRB provides an abstraction layer over the actual storage
devices, which can include various type of filesystems, as
well as databases and archival storage systems. Because of
this transparancy, SRB can accommodate virtually limit-
less amounts of data and various types of data scattered in
multiple geographic locations can be accessed in a single rep-
resentation from any grid node. Files and directories within
SRB are organized in so called collections. With this ab-
straction, data items which are stored in a single collection
can in fact be stored on heterogenous and geographically dis-
tant storage systems, but be referenced to by a single URI
[5]. Individual files or directories can be accessed in the
same manner. The available interfaces include a UNIX-like
file I/O interface, a Java API called JARGON [8], and an
interface that supports get and put operations of individual
files, directories, or entire collections.

SRB also provides a metadata catalog service (MCAT), by
which collections can be annotated, queried and retrieved,
providing an abstract definition for resources. These anno-
tations take the form of user-definable attribute-value pairs.
They can be arbitrarily modified and queried, for example
through JARGON [8]. This makes it possible to query SRB
as one would a database management system, but instead
of records you receive URI’s of files or collections. Using
these features, one can gather a set of distinct physical re-
sources to form a single logical resource with some abstract
properties.

3.3 Job Submission System
Unfortunately, GT4 was not yet functioning properly on
the grid we are using for these experiments. We therefore
used the tools made available through the European Data
Grid project [6] to perform the current grid experiments
with Lucene. These tools include a number of job plan-
ning, submission, and tracking tools (edg-job-list-match,
edg-job-submit, and edg-job-get-status respectively), writ-
ten in Python. Job descriptions are written in specialized
configuration files, marked up using the Job Description
Language.

4. A GRID-ENABLED LUCENE
To make Lucene run in our grid environment, we imple-
mented a number of additions on top of the standard Lucene
implementation. The main ones concern Lucene’s interac-
tion with SRB and the usage of MCAT, the metadata cat-
alog service. The resulting implementation is called Grid-
Lucene; below, we briefly describe the additions that distin-
guish GridLucene from Lucene.

4.1 Storage
As described in subsection 3.2, each node on the grid has
uniform access to files through storage middleware, such as
SRB. Although it is possible, to some extent, to define on

which particular machines or nodes our jobs will run, we
decided not to make use of this functionality since it is not
possible to define when our jobs will run. What we do know
is that it is possible to describe which data from the stor-
age middleware must be accessed and that this storage is
available to all nodes through the network.

So, in order for Lucene to communicate with SRB, we have
subclassed Lucene’s (abstract) Directory class. This makes
communications from Lucene with SRB transparent, be-
cause we can regard an SRB collection as any other local
or RAM directory. Because of the implicit networking over-
head, we wanted to evaluate the indexing and searching per-
formance and compare it with a local, disk-based Lucene
installation. The results of this evaluation can be found in
Section 6.

4.2 Metadata
Using MCAT, the metadata catalog service within SRB in-
troduced in Section 3.2, one can select certain files or collec-
tions from SRB, based on definable criteria. These criteria
can be either more “regular” properties, such as filenames,
sizes, and creation dates, but also manual annotations. For
example, one can label a SRB collection and all the files
therein {collection:INEX, year:2005, indexed:no}. A
different set of files might have the same annotations, but
a different value for one key: year:2006. When queried for
collection:INEX, the SRB server will return the URI’s of
all the files in both collections. It would also be possible
to just return the URI’s of the collections themselves. Sin-
gle files, directories, or collections can thus be located in a
more semantic way than is normally possible using regular
filesystems.

To make use of this new possibility, we have written Java
classes which can partition a given document collection (con-
sisting of multiple files) into subparts, put these on SRB, and
annotate them. In a typical setting, one would split the col-
lection into subsets, based on filesizes or the number of files,
depending on the collection or task at hand.

This approach makes it possible for nodes to “discover” on
their own which documents remain to be indexed. This
means that, during indexing, each node that starts its job
can select one of the remaining subparts of the document
collection on the fly. It then indexes the documents in this
subcollection and labels it as done. The indexing itself is
preceded by transferring the actual documents from SRB
and could be optimized by using either the local disk or
RAM as a buffer. The index is written directly onto SRB
or transferred afterwards from the buffer, so that it will be
available in a later stage for retrieval. There are various
possible approaches to transferring files from and to SRB,
on which we elaborate in section 5.2.

The entire indexing process is shown graphically in Figure 2.
Once the index has been stored on SRB, it is again possible
to annotate it with specific metadata. It can, for example, be
labeled with a description of its contents, the time taken to
create the index, or the used Analyzer. Since the metadata
is not restricted to pre-defined fields, the only limit is one’s
imagination or needs.



Figure 2: Indexing on a grid, using GridLucene. The
document collection is split up into subsets. Each in-
dexing node “discovers” which part(s) remain to be
indexed based on SRB metadata. It selects a part,
downloads and indexes the documents it contains
into a separate index and transfers the index back
to SRB. The index can then again be labeled with
user definable metadata.

At retrieval time, the searcher node(s) can query SRB to
discover which directories have certain annotations and thus
contain relevant indices for a certain query. They can then
either load them into a Lucene MultiSearcher (if there is
more than one relevant index), or a single IndexSearcher

(If only a single index has been created, or if multiple in-
dices have been merged into one). Both approaches can
again make use of our SRB Directory class. In experimen-
tal information retrieval settings where very large batches
of queries are more common, such as the TREC Terabyte
track, it may also be beneficial to divide the queries into
subsets and distribute these among the searcher nodes as
depicted in Figure 3.

5. EXPERIMENTAL ENVIRONMENT
Now that we have described GridLucene, we turn to an eval-
uation of the efficiency of the additions implemented in Grid-
Lucene, and, more generally, of GridLucene.

We investigated the performance of the SRB-related classes,
in order to assess response times and the scalability of the
approach. Our goal is to see how Lucene performs in a
grid setting, with varying document numbers to index and
search, using the classes described in the previous section.
Below, we present preliminary outcomes of “evaluations in
progress.” That is, at this stage our experiments do not
yet provide an exhaustive benchmark analysis, but they do
provide a sanity check in that they indicate how the perfor-
mance of using SRB in combination with GridLucene relates
to more conventional approaches.

Figure 3: Searching on a grid. The separately cre-
ated indices can be “discovered” by a searcher node,
using SRB metadata. Each retrieval node then
searches the appropriate index or indices.

5.1 Test Collection
For our experiments, we used the INEX 2005 test collec-
tion, which contains about 12,000 XML documents with an
average size of 50 KB each [34]. We split it up randomly,
based on filenumbers rather than sizes. In each experiment,
we calculated the overall time taken using GridLucene and
compared this with the results of Lucene running on a single
machine (using the same Lucene version and settings, Java
version, and document collection, but with everything stored
locally on disk). This machine has dual Pentium 4 proces-
sors, each running at 3.0 GHz, 2GB of RAM, and Linux with
kernel version 2.6.12 as operating system. We used Lucene
version 1.9.1 and SRB version 3.4.1. Every indexing and
searching run has been executed multiple (40), consecutive
times, to compensate for any caching that may be involved;
the times reported below are averaged over these 40 runs.

For indexing, we created document subcollections with an
increasing numbers of files, starting with 1,000 documents
and adding 1,000 at each increment, with an upper limit of
10,000 documents. The presented indexing times for Grid-
Lucene include transferring the documents from SRB and
putting the generated index back on SRB, as described in
Section 4.2. For searching, we used the indices generated
during the indexing stage. GridLucene searches the indices
stored on SRB, whereas the locally running Lucene uses lo-
cally stored indices. As queries we have taken 200 actual
INEX topics2 for this corpus and sequentially searched the
index for each of them.

2http://inex.is.informatik.uni-duisburg.de/2005/

http://inex.is.informatik.uni-duisburg.de/2005/


Figure 4: Time it takes to transfer an increasing
number of files from SRB to a grid node. Due to
the multi-threaded, parallel implementation, there
is no noticable slowdown.

5.2 Transferring Files
We experimented with different ways of transferring the doc-
uments from and to a grid node. There are basically two
distinct ways to transfer files from and to SRB [8]. The
first is using methods from a Java FileStream like class,
written to interact with SRB, which has roughly the same
functionality as its Java counterpart. With its methods it
is, for example, possible to seek a position in a file and read
in an array of bytes. The other method is a higher-level
class, which is able to transfer files using multiple threads.
In turn, each thread can send multiple files in parallel, thus
greatly improving performance.

For indexing we started out by using the FileStream ap-
proach to read in the source documents. This proved to
be error-prone due to connection issues; a slight lapse in
network connectvity caused the sequential stream to break
unrecoverably. On top of that, this kind of transfer is also
relatively slow. We therefore switch to a caching approach,
in which we use the higher-level method to first download
all the necessary documents to the indexing node. This does
require a receiving node to have at least enough diskspace
available to hold the files it needs to index. Figure 4 shows
the average time it takes to transfer varying numbers of
documents from SRB to a grid node, using the higher-level
copyTo method. Further research is neccessary to deter-
mine how this method scales up beyond 10,000 documents
and with varying document sizes. It seems that the 1 Gb/s
ethernet connection is definitely not a bottleneck. When
the index has been created it is transferred back to SRB
using the same method. Before doing so, we first merge the
resulting index segments into a single compound file.

We keep the original FileStream method on the retrieval
side, since the searcher classes only need to access certain
parts of the indexfile(s), namely those which contain the
relevant parts of the inverted index and document mappings.
We use the approach as described in section 4.1. For this
evaluation we further use a single index, growing in size, and
a single retrieval node. However, the implementation used

can easily be extended to use multiple SRB indices in a
Lucene MultiSearcher. We use the default retrieval model
within Lucene.

6. EVALUATION
We wanted to know how long it takes GridLucene to index
a certain set of documents from SRB to an SRB index and
compare this with Lucene installed on a standalone machine.
We also wanted to do a similar comparison for retrieval,
as described in the previous section. The numbers in the
figures presented in this section are the means of each run,
with accompanying standard deviations.

6.1 Indexing
Figure 5a compares the total indexing time against an in-
creasing number of documents. This also includes, in the
case of GridLucene, the time to transfer documents from
and indices to SRB. There is a slight variation in the transfer
times of files from and to SRB, as can be seen from Figure 4.
This variation also affects the results presented in figure 5a.
It was clear from the beginning that GridLucene indexing
times would be higher for any number of documents, due to
the implicit networking overhead.

Although indexing using GridLucene is slower than a lo-
cal setup, the extra time needed is limited and does not
exceed 30 seconds. It also seems constant over every run,
which may indicate that a trade-off point exists between con-
ventional and grid-based indexing, at which the extra time
needed for file I/O can be compensated by making subsets
of the task and distributing these to multiple nodes. The
additional indexing time involved when using GridLucene
averages around 20 seconds per indexing task for these ex-
periments, which may be an important predictor for this
constant. Indexing 6,000 documents for example, would take
around 60 seconds using a locally installed Lucene. Roughly
the same amount of time is needed for GridLucene to index
2,000 documents. So, when dividing these 6,000 documents
into three subsets and dispatching each to a grid node, the
overall time taken is the same for both approaches. We have
collected too little data however, to accurately determine if
and where exactly the trade-off point lies and whether this
would still hold for more and/or larger documents.

The fact that grid nodes running GridLucene can discover
the annotated subcollections on their own is novel and can
be seen as a step forward towards the acceptance of using
grids within information retrieval.

6.2 Searching
Figure 5b shows a less optimistic picture. The searching
times for GridLucene seem to increase more with a grow-
ing index size, than with a locally installed Lucene: file ac-
cess method we currently use obviously fails for the task.
We did not use the copyTo method from Section 5.2 for re-
trieval, thinking that it would not be necessary to copy the
entire index to a searcher node. Instead, we held on to the
FileStream approach, which clearly has its adverse effects on
response times. Additionally, we did not perform any kind
of local caching, so each time the index gets queried for
a term, the request travels through the network. We had
no means of quantitatively measuring the network overhead



Figure 5: Indexing times of GridLucene (using SRB) compared with a local installation of Lucene and the
time taken for 200 queries to be retrieved, with varying document numbers.

using the tools available on our grid, so we can only guess
that caching the most-accessed parts of an index locally on
a retrieval node will be beneficial.

Had we used the same method to transfer the index files
as we did during indexing, the picture would probably have
been similar to Figure 6a, with the response times of Grid-
Lucene being consistently higher (adding around 20 seconds)
than the local Lucene. Whether this is in fact the case and
to which extent this statement holds, remains a topic for
further research.

7. CONCLUSIONS
We investigated if and how open source retrieval engines
can be deployed in a grid environment. When comparing
grids to conventional distributed information retrieval, the
lack of a-priori knowledge about available nodes is one of
the most significant differences. On top of that, it is also
unknown when a particular node has time and resources
available and starts a submitted job. Conventional methods
such as RMI are therefore not directly usable and we propose
a different approach, using middleware designed specifically
for grids. As an example we have taken Lucene and imple-
mented some grid-specific classes, based on this middleware.
The resulting implementation, GridLucene, is available for
downloading.

Some properties of the used grid storage middleware open
up new and interesting possibilities. With relatively minor
additions to Lucene we were able to transparently incorpo-
rate metadata about document (sub)collections and indices.
Using user definable annotations, GridLucene can automat-
ically find documents remaining to be indexed. The current
approach thus makes it worthwhile to semi-automatically
“parallelize” the indexing of large document collections.

Indexing new, additional documents in a later stage is also
straightforward using a similar approach. They can be stored
in a new index, or added to an existing one based on pro-
vided annotations. SRB also provides a theoretically infi-
nite storage capacity, because additional storage space can

be added without having to deal with changing file names
and locations.

On the retrieval side, GridLucene can use the annotations
to discover which indices exist on the grid and, most im-
portantly, might be relevant. Especially in a grid setting,
where sharing and collaboration are some of the main driv-
ing forces, these new possibilities give way to a whole new
range of applications. In a sense, one can simply “plug in”
additional indices during a search or discover what others
might already have indexed. However, the way in which
results from different information providers should be com-
bined is still an ongoing issue within the distributed IR re-
search field.

With GridLucene, a framework has been created in which
research from the distributed information retrieval commu-
nity can be tested in a grid setting. For example, the re-
source description, selection and merging algorithms for dis-
tributed/federated text databases [7] can be more or less
directly applied in a multi-organizational grid environment.

We carried out some initial benchmarkings on the proposed
implementations and found that GridLucene incurs a minor
and consistent penalty when indexing on SRB, while the
online performance during document retrieval incurs a far
more dramatic penalty. This is most likely due to the chosen
file-access methods—while appropriate in a grid-based en-
vironment, it proves to be a relatively slow and error-prone
file access method in the current setting. It seems there is a
trade-off factor between the performance of distributing the
indexing task among grid nodes (using GridLucene) and lo-
cal indexing. We did not collect enough data to test whether
this is in fact the case and where it plateaus. This is there-
fore something we intend to study further, for example using
larger and more heterogeneous corpora

We have not yet investigated whether a lower level alteration
of Lucene might also be fruitful in a grid environment. When
GT4 becomes available on our grid, we intend to answer that
question as well. Furthermore, we plan to use and evaluate



divide-and-conquer grid API’s such as IBIS [36, 35] in an
information retrieval setting.

8. AVAILABILITY
GridLucene is available for download at http://ilps.science.
uva.nl/Resources/, under the same license as Lucene is dis-
tributed with.

9. ACKNOWLEDGMENTS
Thanks to Gilad Mishne for his insights into the inner work-
ings of Lucene, to Machiel Jansen for his last minute com-
ments, and to the reviewers for their constructive comments.

This work was carried out in the context of the Virtual Lab-
oratory for e-Science project (http://www.vl-e.nl). This
project is supported by a BSIK grant from the Dutch Min-
istry of Education, Culture and Science (OC&W) and is part
of the ICT innovation program of the Ministry of Economic
Affairs (EZ).

Maarten de Rijke was supported by the Netherlands Organ-
isation for Scientific Research (NWO) under project num-
bers 017.001.190, 220-80-001, 264-70-050, 354-20-005, 612-
13-001, 612.000.106, 612.000.207, 612.066.302, 612.069.006,
and 640.001.501.

10. REFERENCES
[1] M. Aldinucci, M. Coppola, S. Campa, M. Danelutto,

M. Vanneschi, and C. Zoccolo. Structured
implementation of component based grid programming
environments. In Dagstuhl Seminar Future Generation
Grid 2004, CoreGRID series. Springer Verlag, 2005.

[2] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
S. Tuecke, and I. Foster. Secure, efficient data
transport and replica management for
high-performance data-intensive computing. In MSS
’01: Proceedings of the Eighteenth IEEE Symposium
on Mass Storage Systems and Technologies, page 13,
Washington, DC, USA, 2001. IEEE Computer Society.

[3] D. P. Anderson. BOINC: A system for public-resource
computing and storage. In GRID ’04: Proceedings of
the Fifth IEEE/ACM International Workshop on Grid
Computing (GRID’04), pages 4–10, Washington, DC,
USA, 2004. IEEE Computer Society.

[4] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley,
N. P. C. Hong, B. Collins, N. Hardman, A. C. Hume,
A. Knox, M. Jackson, A. Krause, S. Laws,
J. Magowan, N. W. Paton, D. Pearson, T. Sugden,
P. Watson, and M. Westhead. The design and
implementation of grid database services in ogsa-dai.
Concurrency and Computation: Practice and
Experience, 17(2–4):357–376, 2005.

[5] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The
SDSC Storage Resource Broker. In Procs. of
CASCON ’98, Toronto, Canada, 1998.

[6] R. Berlich, M. Kunze, and K. Schwarz. Grid
computing in europe: from research to deployment. In
CRPIT ’44: Proceedings of the 2005 Australasian

workshop on Grid computing and e-research, pages
21–27, Darlinghurst, Australia, Australia, 2005.
Australian Computer Society, Inc.

[7] J. Callan. Distributed information retrieval. In W. B.
Croft, editor, Advances in Information Retrieval:
Recent Research from the Center for Intelligent
Information Retrieval, The Kluwer International
Series in Information Retrieval, pages 127–150. Kluwer
Academic Publishers, 2000.

[8] S. D. S. Center. JARGON, a Java API for the
DataGrid, 2006. http://www.sdsc.edu/srb/jargon.

[9] C. Clarke, N. Craswell, and I. Soboroff. The TREC
Terabyte retrieval track. SIGIR Forum, 39(1):25–25,
2005.

[10] C. Clarke, F. Scholer, and I. Soboroff. The TREC
2005 Terabyte track. In The Fourteenth Text
REtrieval Conference (TREC 2005) Proceedings, 2005.

[11] G. Fedak, C. Germain-Renaud, V. Neri, and
F. Cappello. XtremWeb: A generic global computing
system. In CCGRID ’01: Proceedings of the 1st
International Symposium on Cluster Computing and
the Grid, page 582, Washington, DC, USA, 2001.
IEEE Computer Society.

[12] I. Foster. Internet Computing and the Emerging Grid.
Nature, 7 Dec. 2000.

[13] I. Foster. What is the grid? A three point checklist.
GRIDtoday, 1(6), 2002.
http://www.gridtoday.com/02/0722/100136.html.

[14] I. Foster. Globus Toolkit version 4: Software for
service-oriented systems. In IFIP International
Conference on Network and Parallel Computing,
volume 3779 of Lecture Notes in Computer Science,
pages 2–13. Springer Verlag, 2005.

[15] I. Foster and A. Iamnitchi. On death, taxes, and the
convergence of peer-to-peer and grid computing. In
2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), Berkeley, CA, Feb. 2003.

[16] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of
Supercomputer Applications and High Performance
Computing, 11(2):115–128, 1997.

[17] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
Grid services for distributed system integration.
Computer, 35(6):37–46, 2002.

[18] I. Foster, C. Kesselman, L. Pearlman, S. Tuecke, and
V. Welch. The community authorization service:
Status and future. In Proceedings of Computing in
High Energy Physics 03 (CHEP ’03), 2003.

[19] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
security architecture for computational grids. In ACM
Conference on Computer and Communications
Security, pages 83–92, 1998.

http://ilps.science.uva.nl/Resources/
http://ilps.science.uva.nl/Resources/
http://www.vl-e.nl
http://www.sdsc.edu/srb/jargon
http://www.gridtoday.com/02/0722/100136.html


[20] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations.
Int. J. High Perform. Comput. Appl., 15(3):200–222,
2001.

[21] I. Foster, H. Kishimoto, A. Savva, D. Berry,
A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,
F. Siebenlist, R. Subramaniam, J. Treadwell, and
J. V. Reich. The Open Grid Services Architecture,
Version 1.0. Technical report, Global Grid Forum,
2005. http://www.ggf.org/documents/GFD.30.pdf.

[22] C. Germain-Renaud, G. Fedak, V. Néri, and
F. Cappello. Global computing systems. In LSSC ’01:
Proceedings of the Third International Conference on
Large-Scale Scientific Computing-Revised Papers,
pages 218–227, London, UK, 2001. Springer-Verlag.

[23] C. Germain-Renaud and D. Monnier-Ragaigne. Grid
result checking. In CF ’05: Proceedings of the 2nd
conference on Computing frontiers, pages 87–96, New
York, NY, USA, 2005. ACM Press.

[24] GGF. Global Grid Forum, 2006. http://www.ggf.org.

[25] Globus. The Globus toolkit, 2006.
http://www.globus.org/toolkit.

[26] ILPS. The ILPS extension of the Lucene search
engine. http://ilps.science.uva.nl/Resources.

[27] ILPS. Moodviews. http://www.moodviews.com.

[28] LookSmart. Grub’s distributed web crawling project,
2006. http://grub.looksmart.com.

[29] Lucene. The Lucene search engine.
http://lucene.apache.org/.

[30] Q2ADPZ. http://qadpz.idi.ntnu.no.

[31] A. Rajasekar, M. Wan, R. Moore, W. Schroeder,
G. Kremenek, A. Jagatheesan, C. Cowart, B. Zhu,
S.-Y. Chen, and R. Olschanowsky. Storage resource
broker - managing distributed data in a grid. In
Computer Society of India Journal, Special Issue on
SAN, volume 33, pages 42–54, October 2003.

[32] B. Sotomayo and L. Childers. Globus Toolkit 4:
Programming Java Services. The Morgan Kaufmann
Series in Networking. Morgan Kaufmann, 2006.

[33] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: The condor experience. In
Concurrency and Computation: Practice and
Experience, 2004.

[34] A. Trotman and M. Lalmas. Introduction to the inex
2005 workshop on element retrieval methodology. In
Proceedings of the INEX 2005 Workshop on Element
Retrieval Methodology, Second Edition, 2005.

[35] R. V. van Nieuwpoort, J. Maassen, R. Hofman,
T. Kielmann, and H. E. Bal. Ibis: an efficient
Java-based grid programming environment. In Joint
ACM Java Grande - ISCOPE 2002 Conference, pages
18–27, Seattle, Washington, USA, November 2002.

[36] K. van Reeuwijk, R. V. van Niewpoort, and H. E. Bal.
Developing Java grid applications with Ibis. In Proc.
of the 11th International Euro-Par Conference, pages
411–420, Lisbon, Portugal, September 2005.

[37] G. von Laszewski, P. Z. andTan Trieu, and D. Angulo.
The Java CoG kit experiment manager. Technical
report, Argonne National Laboratories, 2006.

[38] D. Werthimer, J. Cobb, M. Lebofsky, D. Anderson,
and E. Korpela. SETI@HOME – Massively
distributed computing for seti. Comput. Sci. Eng.,
3(1):78–83, 2001.

[39] L. J. Winton. A simple virtual organisation model and
practical implementation. In CRPIT ’44: Proceedings
of the 2005 Australasian workshop on Grid computing
and e-research, pages 57–65, Darlinghurst, Australia,
Australia, 2005. Australian Computer Society, Inc.

[40] ZetaGrid. http://www.zetagrid.net.

http://www.ggf.org/documents/GFD.30.pdf
http://www.ggf.org
http://www.globus.org/toolkit
http://ilps.science.uva.nl/Resources
http://www.moodviews.com
http://grub.looksmart.com
http://lucene.apache.org/
http://qadpz.idi.ntnu.no
http://www.zetagrid.net

	1 Introduction
	2 Background
	3 Grid Components
	3.1 General
	3.2 Storage Resource Broker
	3.3 Job Submission System

	4 A Grid-enabled Lucene
	4.1 Storage
	4.2 Metadata

	5 Experimental Environment
	5.1 Test Collection
	5.2 Transferring Files

	6 Evaluation
	6.1 Indexing
	6.2 Searching

	7 Conclusions
	8 Availability
	9 Acknowledgments
	10 References 

