
Enabling Data Transport between Web Services
through alternative protocols and Streaming

Spiros Koulouzis
skoulouz@science.uva.nl

Edgar Meij
E.J.Meij@uva.nl

M. Scott Marshall
S.Marshall@uva.nl

Adam Belloum
A.S.Z.Belloum@uva.nl

Informatics Institute
ISLA

University of Amsterdam

Abstract

As web services gain acceptance in the e-Science com-
munity, some of their shortcomings have begun to appear.
A significant challenge is to find reliable and efficient meth-
ods to transfer large data between web services. This paper
describes the problem of scalable data transport between
web services, and proposes a solution: the development of
a modular Server/Client library that uses SOAP as a con-
trol channel while the actual data transport is accomplished
by various protocol implementation, as well as a simple
API that developers can use for data-intensive applications.
Apart from file transport, the proposed approach offers the
facility of direct data streaming between web services, an
approach that could benefit workflow execution time by cre-
ating a data pipeline between web services. Finally, the
performance and usability of this library is evaluated, un-
der the indexing application that the Adaptive Information
Disclosure Application (AIDA) Toolkit offers as a Web Ser-
vice.

1 Introduction

Web services offer an appealing paradigm for develop-
ing scientific applications by providing interoperability and
flexibility in a large scale distributed environment. Through
the use of XML based protocols (SOAP) and interfaces
(WSDL), web services can expose all or part of any appli-
cation in a language independent fashion across heteroge-
neous platforms. Those features enable them to be com-
bined in a loosely coupled way so that more complex oper-
ations may be achieved [23].

Scientific applications can be created from workflows by
combining and coordinating a set of web services so that

a more complex goal is met. In other words, a workflow
brings together web services (and/or applications) in a con-
sistent manner to provide a description of execution of a
higher level application.

Currently, two approaches exist in workflow implemen-
tation: Service Orchestration and Service Choreography.
Service Orchestration (shown in Figure 1) describes how
web services can interact at the message level, including
the application logic and execution order of the functional-
ity exposed by the WSDL a web services provides [6, 17].
In orchestration, the process is always controlled by a work-
flow engine, so all invocations (and replies) are made by
(and to) that workflow. On the other hand, choreography
(shown in Figure 1) is more collaborative, because it de-
scribes the message exchange among interacting — yet in-
dependent — web services [1]. Regardless which architec-
ture is chosen, any workflow execution can be effectively
reduced into 3 stages: (i) generating or obtaining data, (ii)
processing that data, and (iii) transferring or storing the re-
sults. Usually, those three stages are performed by an indi-
vidual web service.

This scenario, however, presents a data transport prob-
lem. During orchestration, any call to a producing web ser-
vice results in a reply back to the workflow engine, which
then needs to transfer the data to a consuming web service.
This results in unnecessary “data hops” between the web
service and workflow engine. In the case of choreogra-
phy, although data is delivered directly to the consuming
web services, this is usually done through SOAP. SOAP,
although suitable for service invocation, can be inefficient
for data transport. Significant performance issues for web
services can occur when binary data must be encoded in
XML, which measurably slows down applications and ab-
sorbs bandwidth [18].

The problems mentioned above are typically addressed
by the introduction of a third party file transfer. For exam-
ple in grid environments, where data is moved around with



Figure 1. (left) Service Orchestration — web service calls are always controlled by a workflow engine
and (right) Service Choreography — which describes the message exchange among interacting web
services.

the help of GridFTP and the Reliable File Transfer (RFT)
service [5]. This approach, however, might present another
problem. Taking into consideration the three stages of the
workflow mentioned above and a simple workflow shown
in Figure 2. WS1 would generate data, save it locally

Figure 2. A simple workflow where web ser-
vices exchange data through file exchange.
This approach results in unnecessary tempo-
rary files.

and pass a file reference to WS2. WS2 would process the
data received, save the result locally, pass the file reference
to WS3 and so on until the final result is obtained. In this
process, temporary files are saved to each web service lo-
cation, which results in an unnecessary demand on storage
resources and slower execution time of the workflow.

An example of an application that follows this scenario
may be seen from the Montage toolkit [14]. This applica-
tion is developed in order to assemble science-grade mo-
saics, located at distributed file repositories, by composing
multiple astronomical images. In other words, this appli-
cation integrates multiple images taken from different parts
of a galaxy in order to produce one representation of that
galaxy. Apart from the complex algorithm that ensures that
the separate images will fit together while preserving some
vital data, the workflow of this application, seen in Figure 3,
produces some intermediate images, that go on to further
processing until they are composed into the final image.

Another application that fits into the simplified workflow
execution mentioned above is the one proposed in [10]. In
this application, web services are used for scientific visu-
alization where the visualization pipeline1 is broken down
into a number of web services.

The data transport problem that web services face can
be summarised in the following way:

1. In service orchestration, all data is passed to the work-
flow engine before delivery to a consuming web ser-
vice.

2. Data transfers are made through SOAP, which is unfit
for large data transfers.

3. third party file transfer is suitable for transferring large
data sets, but is restricted to files. This results in un-
necessary intermediate transfers that slow down work-
flow execution and place excessive demand on storage
resources.

In order to address the above problems, this paper intro-
duces the use of streaming between web services. First of
all, it employs the approach of delivering data directly to a
consuming web service with alternative protocols to SOAP,
thus addressing the first two problems. Second of all, we
describe streaming as a way to deliver data to a web service
without the need for intermediate file transfers.

Our Streaming library enables web services to stream
data directly to each other, creating a data pipeline (such
as seen in Figure 4) that speeds up workflow execution and
eliminate the need for allocating space on local disks. This
library is realised by a simple design of a client/server ar-
chitecture, that is contained in a web service and can take
care of transfers using multiple protocols. Since it is essen-
tial that its use is as simple as possible, it provides a very

1A visualization pipeline entails the process followed for generating
images from data.



Figure 3. The Montage abstract workflow. In
this workflow, there are three intermediate
file transfers.

simple API to web service, that can use it as any other I/O
stream, without having to worry about the transfer itself.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of various protocols WS have at
their disposal for data transport. Section 3 gives a descrip-
tion of our Streaming library, and how WS may use it for file
transfer, or direct streaming. Next in Section 4 we give a de-
scription of the experimental setup, along with an overview
of AIDA, an application that makes use of our library. Sec-
tion 5 provides some performance measurements of our li-
brary, under two use cases. Finlay Sections 6 and 7, provide
the future work and conclusions. The implementation and
specifics are discussed in the following Sections.

2 Data Transport Methods

This section presents an overview of currently available
transport methods and protocols that web services can use,
for either file transfer or direct data streaming.

2.1 SOAP

SOAP is an XML-based protocol for exchanging mes-
sages over decentralized, distributed environments, and can
potentially be used over a variety of protocols, although
the most common implementation is made over HTTP(S).
SOAP forms the basic messaging framework upon which

Figure 4. A simple workflow where web ser-
vices communicate through a data pipeline.

web services may communicate, through several different
types of messaging patterns. One of these patterns is the
Remote Procedure Call (RPC), in which a client sends a
request message to a web service. After processing that re-
quest, the web service sends back a response to the client.
A SOAP message consists of three parts: (i) a mandatory
envelope element, which is the top element of the XML
document, (ii) an optional SOAP Header that defines how
a recipient should process the message, and (iii) a manda-
tory SOAP body element, that contains the actual message,
as it represents remote procedure calls and responses. [8,3].

Using SOAP to transfer data between web services is
probably the most straightforward approach to sending and
receiving data because no extra library development is re-
quired. In particular, current implementations (e.g. Axis)
provide a solid framework for message delivery and error
handing. Additionally, SOAP is platform independent: as
long as the data types sent are supported by XML or have
the appropriate schema definition, they can be handled by
any application. Another advantage of using SOAP is that
it makes it possible to add metadata to the message. Nev-
ertheless, SOAP can introduce a significant overhead, thus
slowing down its overall performance as a data transport
protocol. In addition to the overhead of additional message
size, the serialization and deserialization process of a SOAP
message may cause additional performance delays [19].

2.2 SOAP with Attachments

SOAP with attachments (SwA) is an abstract model for
SOAP, that enables the transport of binary formatted data
along with a SOAP envelope. The SOAP message is still
described by the three parts mention in Section 2.1, but with
the addition of one or more Multipurpose Internet Mail Ex-
tensions (MIME) parts that are not defined in the SOAP en-
velope but are related to the message. Each MIME part con-
tains some header information that may be used for identi-
fying the type of the embedded data, the encoding used for
this MIME part, and the content location. [21]. An alterna-
tive specification to MIME is the Direct Internet Message
Encapsulation (DIME). The attached data in a DIME mes-
sage is defined as a payload and a single message may con-
tain multiple payloads. The contents of DIME messages
are defined by records. Each record specifies the payload
size in bytes, the payload content type, and other informa-
tion [22]. SwA has a clear advantage over SOAP because at-



Figure 5. The Streaming library architecture. Dotted lines represent possible SOAP calls or byte
transfer paths.

tachments don’t require deserialization, while the message
retains SOAP’s advantages. Additionally, SwA can handle
large data sets [22], but requires significant storage space
for handling the attachment (at least in the Axis implemen-
tation).

2.3 HTTP

Both SOAP and SwA are, in most cases, transmitted over
HTTP, which is a well-established and stable protocol that
defines a set of headers for exchanging data. An abundance
of high quality software is available that supports high speed
transfers of large data sets in HTTP, without having to worry
about firewalls. Furthermore, in the context of web services,
Tomcat containers already handle HTTP communications,
thus providing a solid framework for exploiting this facility.
On the down side, HTTP does not provide any facilities for
handling metadata or specify how that data should be han-
dled by the recipient side. Thus HTTP may require some
additional effort in implementing extensions that could de-
liver data to web services.

2.4 GridFTP

GridFTP is a protocol developed specifically for the grid
environment. It is an extension of the FTP that supports
security using public-key-based Grid Security Infrastruc-
ture(GSI) and Kerberos, parallel data transfer using mul-
tiple TCP streams, striped data transfer, automatic adjust-
ment of the TCP window size, and data transfer monitor-
ing [15, 4]. Although GridFTP has set the standard for data
transfers in grid environments, it is not usable in a web ser-
vices scenario, where these are a loose collection of ser-

vices, rather than a structured Virtual Organization [12]. In
other words, most web service owners don’t offer this kind
of infrastructure. Another problem with using GridFTP is
that developers would be restricted to this particular type
of file transfer, as well as having to implement a client that
would request files from a GridFTP server.

2.5 TCP

TCP is a low level protocol in which all of the previously
mentioned protocols are implemented. It is the oldest and
most established protocol, providing a reliable and in-order
delivery of data that makes it suitable for a wide area of ap-
plications such as File Transfer Protocol, Secure Shell, and
some streaming media applications. In order to offer relia-
bility and in-order delivery, TCP assigns a sequence number
to each packet. This number is used by the receiving end
for ordering packets. Also the receiving side sends back an
acknowledgement for packets that have been successfully
received. Apart from re-transmitted unacknowledged pack-
ets, TCP also checks that no bytes are corrupted by using
a checksum. TCP comes with a variety of tuning options
that enable it to achieve full bandwidth utilization, and min-
imum delay [2,13]. Being a low level protocol, TCP should
be ideal for transporting large volumes of data, with zero
overhead, but it has no facility for metadata. Furthermore,
it requires custom development in order to be incorporated
in a web service. Extra attention to its tuning properties (e.g.
appropriately configuring TCP buffer sizes) is necessary in
order to achieve its full potential.



Figure 6. A use case for indexing documents,
while using the Streaming Library. The doc-
uments are first transferred to the IndexerWS
and then indexed locally.

3 The Streaming Library

In an effort to address the data transport problem, we
have developed a library in Java that employs the protocols
mentioned in Section 2. Our library provides a simple API
that developers and legacy web services can use to trans-
port data. The Streaming library (seen in Figure 5) is a
modular, client/server design that uses SOAP as a control
channel while the actual data transport is accomplished by
the various protocol implementations, which are developed
as plug-ins. The basic components that make up the library
are:

3.1 Connector

This module provides the functionality offered by the
Streaming client/server to a consuming/producing web ser-
vice, in the form of a standard I/O stream. Alternatively,
this module may use these streams to send or store data to
or from a local disk.

3.2 Streaming Client/Server

The role of these components is fairly simple. The server
only needs to send data received from the Connector mod-
ule to a connected client, while the client passes the received
data to the Connector. The details about authentication, and
the actual transfer, are left to the connection component.

3.3 Connection

We abstract the connection component, such that differ-
ent protocol implementations may be added in the design.
For this reason, it is assumed that a connection offers a read

Figure 7. A use case for indexing docu-
ments, while using streaming. The con-
tents extracted from documents are directly
streamed to the IndexerWS.

and write method, as well as one that enables the authen-
tication and/or the encryption of the channel used for the
transfer.

3.4 Establishing a Data Stream

Having described the basic components that make up the
design, it is time to see how these components interact to
establish a data stream between two web services:

1. The workflow engine invokes the producing web ser-
vice. That service will start producing data while pass-
ing them to the connector, which starts a Streaming
Server.

2. At this point, there are two alternatives: (i) the produc-
ing web service might respond back to the workflow
engine with a reference of the data stream2 or (ii) pass
the reference directly to the consuming web service as
a SOAP call. In the first case, it is the responsibility of
workflow engine to invoke the consuming method of
the second web service, which will use the Connector
module to connect to the server and get the data. In the
second case, the producing web service will contact
the consuming web service making the same call. For
this second case, the workflow engine should provide
the consuming endpoint to the web service.

3. If the protocol implementation provides authentication
and/or encryption mechanisms and the stream refer-
ence instructs the client/server to do so, the connection
between them would first have to authenticate each
side. In the case where no authentication and/or en-
cryption is required, the connection is established and
the client starts receiving the data stream.

2This reference is an XML document, containing the server’s address,
port, and protocol specific configurations.



Figure 8. Speed measured in MB/sec, for file
transport for GridFTP, HTTP, TCP, SwA and
SOAP.

4. As soon as the producing web service is done pro-
ducing data, it simply closes the stream provided by
the Connector. As a consequence, the Connector must
close the connection between server and client. The
specific approach to closing the connection depends on
the protocol implementation.

5. Finally, the producing web service should return in-
formation about the transfer to the workflow engine,
such as any errors that might have occurred during that
transfer.

3.5 Streaming web services VS File-
oriented web services

As mentioned in Section 1, one of the problems web
services face while transferring data using third party file
transfers is the fact that temporary intermediate files must
be stored as a side effect of data transport. Streaming data
directly to web services could solve this problem, but there
are a number of issues to be considered before adopting that
approach. The main hurdle to adopting streaming comes
from the nature of the application a web services imple-
ments. If, for example, the application is designed to oper-
ate with large files that somehow are loaned, processed and
passed to a next web service, streaming might not be appli-
cable. This is because the loading and processing overhead
might be significantly larger that the actual transfer itself. If
this is the case, streaming is only able to save storage capac-
ity in computational nodes and does not improve workflow
execution time dramatically. Furthermore when reliability
is the issue, streaming could also prove inefficient. Con-
sider the example where a web service provides data from

Figure 9. Speed measured in MB/sec, for file
transport in a tuned TCP Java implementa-
tion, an HTTP, and an untuned TCP imple-
mentation (the current implementation of the
library).

a scientific instrument, (e.g. a telescope, or a scanner) and
that web service uses streaming to deliver data to a consum-
ing web service and that service consumes data directly. If
the data stream is broken for any reason, all the data pro-
duced so far would be lost, thus resuming the consuming
web service from the last known good checkpoint would be
impossible. Another case where streaming is not applica-
ble is when a consuming web service must obtain the entire
data set before operating on it. Nevertheless, when a web
service is designed to produce live data (e.g. cluster loads,
or stock prices), streaming would significantly benefit the
workflow execution time.

4 Experimental Setup

The Adaptive Information Disclosure Application
(AIDA) Toolkit is a generic set of components that can per-
form a variety of tasks such as learn new pattern recogni-
tion models, specialized search on resource collections, and
store knowledge in a repository. AIDA provides a set of
components which enable the indexing of text documents
in various formats, as well as the subsequent retrieval given
a query. The Indexer and Search components are both built
upon Apache Lucene, version 2.1.0 [16]. AIDA’s Indexer
component — called IndexerWS — is a webservice which
is able to index3 a variety of document formats while taking
care of the preprocessing (the conversion, tokenization, and
possible normalization) of the text of each document as well

3Indexing is the process of analysing and extracting content from a
document. These contents are stored in an index in order to optimize the
speed and performance of finding documents relevant to a search query



Figure 10. Workflow execution time for vari-
ous file sizes. The two first bars for every
file represent execution time for file transport
with HTTP and TCP respectively

as the subsequent index generation. The so-called “Docu-
mentHandlers” which handle the actual conversion of each
source file are loaded at runtime, so a handler for any other
proprietary document encoding can be created and directly
used [20]. The task of the IndexerWS might be potentially
data intensive, in which case SOAP is not able to meet the
IndexerWS’s demands. To enable the IndexerWS to index a
set of documents, the Streaming library was utilized for two
use cases:

1. A set of documents is obtained by a producer web ser-
vice (e.g. from a database), and transferred to the In-
dexerWS for indexing.

2. A PDF DocumentHandler is implemented as a web
service, for extracting text from a set of PDF files. This
text is streamed directly to the IndexerWS for index-
ing.

For the first case, illustrated in Figure 6, a Data Transport
web service was developed that is able to transfer a set of
files to the IndexerWS location, in a third party file trans-
fer manner, using the API provided by the Streaming li-
brary and Axis. For the second case seen in Figure 7, the
PDF DocumentHandler and the IndexerWS used the APIs
to stream data between them.

In order to assess the performance of each protocol and
transfer method in the two use cases mentioned in Section
4, the IndexerWS and the DataTransportWS have been de-
ployed4 on the DAS-3 Distributed Supercomputer [11]. For
the DataTransportWS four protocols were tested in terms of

4All web services were deployed in Axis 1.4 running in Apache Tomcat
6.0.16

Figure 11. Workflow execution time for gen-
erating various file sizes. The two first bars
for every file represent execution time for file
transport with HTTP and TCP respectively.

speed. This metric was acquired for disk-to-disk transfers.
For the IndexerWS, two simple workflows were developed.
The first workflow transfers a set of PDF files from a pro-
ducer location, to the IndexerWS, which is then invoked to
start the indexing process. The second workflow, invokes
a PDF DocumentHandler that extracts the content from a
set of PDFs and directly streams it to the IndexerWS. These
two workflows were measured in terms of execution time 5.

5 Results and Discussion

This section describes the actual performance results we
obtain using our proposed approach on the two tasks: file
and streaming transport.

5.1 File Transport

Figure 8 shows the transport speed for the protocols de-
scribed in Section 2. As expected, GridFTP outperforms
all of the protocols when transferring larger files, as it is
now an optimized mature application. However, SwA and
HTTP are faster than GridFTP in file sizes of 109.47 and
259.48 MB. This could be explained, by the fact that HTTP
and in extension SwA has zero start-up time, since many
web servers and, in this case Tomcat, do not close the con-
nection after the first file request resulting in better perfor-
mance for the subsequent transfer. For the remainder of the
files, HTTP exhibits lower speeds. This is probably because

5In all tests, the producer was located at the cluster site at the Univer-
sity of Amsterdam, while the consumer was at the Vrije Universiteit, also
located in Amsterdam



disk I/O starts to introduce a significant overhead (at least
in the library’s current implementation). Disk I/O latency
affects SwA more than any other protocol, since SwA has
to first save the attachment into the local disk, and then save
it again with the specified name. As a result it could be said
that SwA misuses storage resources. Although one would
expect TCP to have at least the same performance as HTTP,
this is not the case. Start up time is probably the cause of the
speed reduction. Our TCP implementation uses a separate
server to transfer data, and its start up time is approximately
60 msec. Additionally, the lack TCP tuning parameters, is
responsible for this suboptimal performance, together with
the blocking read/writes. This may be seen Figure 9, where
a simple Java TCP file transfer is compared to our imple-
mentation, as well as with the HTTP. The results for this
simple Java TCP file transfer were obtained by trying vari-
ous sizes for the TCP buffer. Furthermore, the performance
of this simple file transfer was even better when the delay
introduced by reading the file was eliminated6. Thus, if the
read/write of a file was done in a non-blocking way, the TCP
performance would reach the expected levels. When look-
ing at SOAP’s performance, it is dramatically lower than
any other protocol. This is because SOAP introduces a sig-
nificant amount of overhead in each message. Additionally,
in order to prevent SOAP from crashing, “chunking” had to
be introduced. In this approach, the file is sent into small
chunks of data (approximately 15MB), preventing crash-
ing and bandwidth utilization. Finally, all protocols ex-
cept SOAP exhibit some speed reduction for file sizes of
1891.13 MB. In this case the transfer concerns five separate
files, thus introducing the latency of five discrete requests, a
problem that is identified and addressed in [9].

5.2 Streaming Transport

As mentioned earlier, two simple workflows were de-
veloped for measuring workflow execution time in file and
streaming transport. Figure 10 shows the execution time, of
the complete indexing operation (obtain the contents, ana-
lyze them, and save them to an index). For each file size,
the first two measures concern the case where the PDFs
are transferred to the IndexerWS and indexed (file trans-
fer). The rest of the measures were obtained by streaming
the PDF contents directly to the IndexerWS. Although even
SOAP performs better than any other file transfer, the time
difference in execution time, is no more than 20 sec in a
total execution time of approximately 140 sec. This small
improvement may be attributed to the time needed to load a
PDF file. When eliminating the time necessary to load the
PDF’s, the performance of streaming is much better than the
one of file transport. In Figure 11, execution times were ob-
tained by having a producing web service generate a simple

6This was done by just reading data from /dev/zero

text file and sending it, for the file transport case, while for
the streaming case, the text was directly streamed to the In-
dexerWS. All protocols except of SwA outperform HTTP
and TCP file transfers. SwA’s low performance may be
again blamed on the way it handles messages. SwA gets
slower as more attachments are introduced to the SOAP
message and because they are first saved to the local disk
and then read by the consumer, SwA proves more inefficient
than just transferring the file and then index it. GridFTP
was not compared in this scenario, as the nodes able to run
a Tomcat container didn’t offer a GridFTP server, while the
ones offering a GridFTP server could not run a Tomcat con-
tainer, or didn’t have adequate storage space.

6 Future Work

The work presented in [7] proposes an interesting ap-
proach in workflow development. More specifically the in-
troduction of a proxy web service in the vicinity of produc-
ing web service would make sure data delivery directly to
a consuming web service. The combination of the Stream-
ing library and this proxy web service, could enable legacy
web services to exchange large data sets, while using the
most appropriate protocol for optimizing performance. This
approach, however, calls for some investigation of whether
SOAP is fast enough at delivering data to web services lo-
cated in the same container. Another approach that would
enable legacy web services to transfer large data sets, could
be the extension of Axis through some plug-in, that would
transform a SOAP message containing data to a stream ref-
erence, thus using an alternative route for data transport.
As HTTP offers an attractive solution for file transport, the
need to develop a mechanism that would also enable di-
rect data streaming is apparent. Additionally integrating an
XML header to streams, would enable developers to include
more information (e.g. metadata) in those streams. Another
benefit from the inclusion of XML headers in the stream
would be the potential optimization of the streaming perfor-
mance for multiple file transfers, because the current imple-
mentation of the streaming library starts a new connection
for every file request. On a higher level, the introduction
of a registry service which producing web services could
use to register stream and file references, would offer more
flexible workflow designs in terms of data transport.

7 Conclusions

We have identified and addressed the problem of trans-
ferring large data sets between web services. We have de-
scribed a modular and extensible Streaming library with a
simple API that is able to transfer large files, as well as con-
nect web services in a continuous data pipeline as an alter-
native approach to data transport. In our proposed approach,



SOAP is used as a control channel, while data is transferred
using the most suitable protocol for either file or streaming
transfers. In addition, the use of streaming could potentially
speed up workflow execution time by eliminating disk I/O
latency and enabling web services to work on data as it is
generated, rather than waiting for an entire file to be deliv-
ered.

8 Acknowledgment

This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl). Part of this
project is supported by a BSIK grant from the Dutch Min-
istry of Education, Culture and Science and is part of the
ICT innovation program of the Ministry of Economic Af-
fairs.

References

[1] W3C. Web Service Choreography Interface (WSCI)
1.0. http://www.w3.org/TR/wsci/.

[2] Advanced Networking Pittsburgh Supercomputing
Center. Enabling high performance data transfers,
2002.

[3] Asif Akram, Rob Allan, and David Meredith. Best
practices in web service style, data binding and val-
idation for use in data-centric scientific applications.
In UK e-Science All Hands Meeting 2006, September
2006.

[4] Bill Allcock, Joe Bester, John Bresnahan, Ann L.
Chervenak, Ian Foster, Carl Kesselman, Sam Meder,
Veronika Nefedova, Darcy Quesnel, and Steven
Tuecke. Data management and transfer in high-
performance computational grid environments. In
Parallel Computing, 2002.

[5] William E. Allcock, Ian Foster, and Ravi Madduri. Re-
liable data transport: A critical service for the grid.
In In Building Service Based Grids Workshop, Global
Grid Forum 11, 2004.

[6] Adam Barker and Jano van Hemert. Scientific work-
flow: A survey and research directions. In Proceed-
ings of the Third Grid Applications and Middleware
Workshop (GAMW’2007), LNCS, page In press, 2007.

[7] Adam Barker, Jon B. Weissman, and Jano van Hemert.
Orchestrating data-centric workflows. In CCGRID,
pages 210–217, 2008.

[8] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew
Layman, Noah Mendelsohn, Henrik Frystyk Nielsen,
Satish Thatte, and Dave Winer. Simple Object Access
Protocol (SOAP) 1.1, 2000.

[9] John Bresnahan, Michael Link, Rajkumar Kettimuthu,
Dan Fraser, and Ian Foster. Gridftp pipelining. In
Proceedings of the 2007 TeraGrid Conference, 2007.

[10] S. Charters, N. Holliman, and M. Munro. Visualiza-
tion on the grid: A web service approach. In Proceed-
ings UK eScience third All-Hands Meeting, 2004.

[11] DAS-3. http://www.cs.vu.nl/das3/.

[12] Ian Foster, Carl Kesselman, and Steven Tuecke. The
anatomy of the grid: Enabling scalable virtual organi-
zations. International Jounral of Supercomputer Ap-
plications, 15(3), 2001.

[13] M. K. Gardner, S. Thulasidasan, and W. Chun Feng.
User-space auto-tuning for tcp ow control in computa-
tional grids. Computer Communications, 2004.

[14] J. C. Jacob, D. S. Katz, G. B. Berriman, J. Good, A. C.
Laity, E. Deelman, C. Kesselman, G. Singh, M.-H. Su,
T. A. Prince, and R. Williams. Montage: A grid por-
tal and software toolkit for science-grade astronomical
image mosaicking. International Journal of Compu-
tational Science and Engineering, 2006.

[15] Rajkumar Kettimuthu, William E. Allcock, Lee Lim-
ing, John-Paul Navarro, and Ian T. Foster. Gridcopy:
Moving data fast on the grid. In IPDPS, pages 1–6.
IEEE, 2007.

[16] Lucene. http://lucene.apache.org.

[17] Chris Pelz. Web Services Orchestration and Choreog-
raphy. Computer, 36(10):46–52, October 2003.

[18] W3C. Three Web Services Recommenda-
tions. http://www.w3.org/2005/01/
xmlp-pressrelease.html.

[19] Robert van Engelen. Pushing the soap envelope with
web services for scientific computing. In ICWS, 2003.

[20] Adaptive Information Disclosure web site. http://
www.adaptivedisclosure.org.

[21] W3C. SOAP Messages with Attachments. http://
www.w3.org/TR/SOAP-attachments.

[22] Ying Ying, Yan Huang, and David W. Walker. A
Performance Evaluation of Using SOAP with Attach-
ments for e-Science. In Proceedings of the UK e-
Science All Hands Conference. Engineering and Phys-
ical Sciences Research Council, 2005.

[23] Jianting Zhang, Ilkay Altintas, Jing Tao, Xianhua Liu,
Deana D. Pennington, and William K. Michener. In-
tegrating data grid and web services for e-science ap-
plications: A case study of exploring species distribu-
tions. e-science, 0:31, 2006.

http://www.w3.org/TR/wsci/
http://www.cs.vu.nl/das3/
http://lucene.apache.org
http://www.w3.org/2005/01/xmlp-pressrelease.html
http://www.w3.org/2005/01/xmlp-pressrelease.html
http://www.adaptivedisclosure.org
http://www.adaptivedisclosure.org
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP-attachments

	1 Introduction
	2 Data Transport Methods 
	2.1 SOAP 
	2.2 SOAP with Attachments
	2.3 HTTP
	2.4 GridFTP
	2.5 TCP

	3 The Streaming Library 
	3.1 Connector
	3.2 Streaming Client/Server
	3.3 Connection
	3.4 Establishing a Data Stream
	3.5 Streaming web services VS File-oriented web services

	4 Experimental Setup
	5 Results and Discussion
	5.1 File Transport
	5.2 Streaming Transport

	6 Future Work 
	7 Conclusions 
	8 Acknowledgment

