Generating Descriptions of Entity Relationships

Nikos Voskarides!, Edgar Meij?, and Maarten de Rijke!

! University of Amsterdam, Amsterdam, The Netherlands
{n.voskarides, derijke}@uva.nl
2 Bloomberg L.P., London, United Kingdom
edgar.meij@acm.org

Abstract. Large-scale knowledge graphs (KGs) store relationships between en-
tities that are increasingly being used to improve the user experience in search
applications. The structured nature of the data in KGs is typically not suitable
to show to an end user and applications that utilize KGs therefore benefit from
human-readable textual descriptions of KG relationships. We present a method
that automatically generates textual descriptions of entity relationships by com-
bining textual and KG information. Our method creates sentence templates for a
particular relationship and then generates a textual description of a relationship
instance by selecting the best template and filling it with appropriate entities. Ex-
perimental results show that a supervised variation of our method outperforms
other variations as it best captures the semantic similarity between a relationship
instance and a template, whilst providing more contextual information.

1 Introduction
Results displayed on a modern search engine result page (SERP) are sourced from
multiple, heterogeneous sources. For so-called organic results it has been known for a
long time that result snippets, i.e., brief descriptions explaining the result item and its
relation to the query, positively influence the user experience [20]. In this paper, we
focus on generating descriptions for results sourced from another important ingredient
of modern SERPs: knowledge graphs. Knowledge graphs (KGs) contain information
about entities and their relationships. A large and diverse set of search applications
utilize KGs to improve the user experience. For instance, web search engines try to
identify KG entities in queries and augment their result pages with knowledge graph
panels that provide contextual entity information [3, 12]. Such panels usually focus on
a single entity and may include attributes of the entity and other, related entities.
Entities can be connected with more than one relationship in a KG, however. For
example, two actors might have appeared in the same film, be born in the same country
and also be partners. Recent work has focused on finding relationships between a pair
of entities and ranking the relationships by a predefined relevance criterion [5]. When
using relationships in real-world search applications, with SERPs being the prime ex-
ample, a crucial problem is that they are typically represented in a formal manner that is
not suitable to present to an end user. Instead, human-readable descriptions that verbal-
ize and provide context about entity relationships are more natural to use [7]. They can
be used, e.g., for entity recommendations [2] or for KG-based timeline generation [1].
Descriptions of KG relationships themselves are usually not included in large-scale
knowledge graphs and previous work on automatically generating such descriptions has

either relied on hand-crafted templates [1] or on external text corpora [22]. The main
limitations of the former are that manually creating these templates is expensive, not
generalizable, and thus it does not scale well. The latter approach is limited as the un-
derlying text corpus may not contain descriptions for all certain relationship instances;
it will not produce meaningful results for instances that do not appear in the text corpus.

We propose a method that overcomes these limitations by automatically generat-
ing descriptions of KG entity relationships. Since there exist textual descriptions of a
certain relationship for some relationship instances, we aim to use these descriptions
to learn how the relationship is generally expressed in text and use this information to
generate descriptions for other instances of the same relationship. Existing relationship
descriptions are usually complex and tailored to the entities they discuss. Also, it is
likely that the KG does not contain all the information included in a description. For
example, the KG might not contain any information about the second part of the fol-
lowing sentence: “Catherine Zeta-Jones starred in the romantic comedy The Rebound,
in which she played a 40-year-old mother of two ...”. Nevertheless, descriptions of the
same relationship share patterns that are specific to that relationship. Therefore, we first
create sentence templates for a certain relationship and then, for a new relationship in-
stance, we select appropriate templates, which we formulate as a ranking problem, and
fill them with the appropriate entities to generate a description.

We propose a method that generates descriptions of entity relationships for a re-
lationship instance given a knowledge graph and a set of relationship instances cou-
pled with their descriptions; we evaluate this method using an automatic and manual
evaluation method, and release the datasets used to the community.! We show that we
generate contextually rich relationship descriptions that are meant to be valid under the
KG closed-world assumption. Moreover, our template-based method is naturally robust
against KG incompleteness, since in the case of lack of contextual information about
the relationship instance, it can still generate a basic description.

2 Related work

Web search engine result pages (SERPs) can be augmented with information about the
query and the documents from KGs in order to improve the user experience [12]. Also,
SERPs can be augmented with textual descriptions and/or summaries with a promi-
nent example being snippet generation for web search [20, 21]. Closest to our setting,
relationship descriptions have been studied in the context of providing evidence for en-
tity recommendation for web search [22] and timeline generation for knowledge base
entities [1]. Our task, generating a description of a relationship instance given a KG,
is similar to event headline generation, where the task is to generate a short sentence
that summarizes a specific event. Similar to our templates, the headline patterns con-
structed in [17] consist of words and entity slots. Our method differs however, since
relationships are more general than events and we thus have to deal with ambiguity at
generation time when selecting which template matches a relationship instance.

Our task is also similar to concept-to-text generation, where the task is to generate
a textual description given a set of database records [18]. In this context, our task is
most closely related to [10, 19]. Saldanha et al. [19] use a template-based approach for

"https://github.com/nickvosk/ecir2017-gder—-dataset/

Table 1: Glossary.

Symbol Description

K knowledge graph

& set of entities

P set of predicates

(s,p,0) knowledge graph triple with s,0 € £ and p € P
v word in vocabulary V

a sentence

T relationship instance of relationship r

Sk

set of templates ¢ € T,. for relationship r

R, set of relationship instances that support the template ¢

set of pairs {r;/,y’), where 3/’ is a textual description (a single sentence)
mapping from an entity to an entity cluster

entity dependency graph of a sentence

compression graph

set of paths in G

AR QX

generating company descriptions from Freebase. They construct sentence templates by
replacing the entities in existing sentences by the Freebase relation of the entity to the
company (e.g., (company) was founded by (founder)). They add a preprocessing step
where they remove phrases from the sentence that contain entities that are not connected
to the company directly. At generation time, the authors replace the entity slots with
the appropriate entities. Lebret et al. [10] propose a neural model to generate the first
sentence of a person’s biography in Wikipedia conditioned on Wikipedia infoboxes.
Our setting is different from these papers since our generated descriptions are neither
restricted to having entities that are directly connected to the subject entity in a KG nor
need they be contained in a Wikipedia infobox.

3 Problem definition
In this section we formally define the task of generating descriptions of entity relation-
ships. Table 1 lists the main notation we use in the paper.
3.1 Prelimilaries Let £ be a set of entities and P a set of predicates. A knowledge
graph K is a set of triples (s, p,0), where s,0 € £ and p € P. We follow the closed-
world assumption for K and use Freebase as our knowledge graph [4, 15]. A sentence
a is a sequence of words [v1, . .., v,], where each v; € a is also in V. Non-overlapping
sub-sequences of a might refer to a single entity e € £.

A relationship r is a logical form in A-calculus that consists of two lambda variables
(x and y), at least one predicate, and zero or one existential variables [24]. Lambda
variables can be substituted with Freebase entities, excluding compound value type
(CVT) entities.? Existential variables, on the other hand, can be substituted with Free-
base entities, including CVT entities. For example, the logical form of the relationship
starsInFilm is Az Ay.3z.actor_film(z,z) A film_starring(z,y). Fig. 1 shows the
equivalent graphical representation of this relationship.

A pair r; = r(s, 0) is a relationship instance of r for entities s, 0 € & if by substitut-
ing z = s and y = o in r and by executing the resulting logical form in the knowledge

2 CVT entities are special entities in Freebase that are used to model attributes of relationships
(e.g., date of marriage).

tor_fil film_starring
@ actor m E

Fig. 1: Graphical representation of the logical form of the starsInFilm relation-
ship. Lambda variables are shown in circles and existential variables in rectangles.

graph K we get at least one result. For example, starsInFilm(BradPitt, Troy) is a
relationship instance of the starsInFilm relationship.

3.2 Task definition We assume that a relationship instance r; can be expressed with
a human-readable description (such as a single sentence) that contains mentions of both
s and o and possibly other entities which may provide contextual information for the
relationship r or the entities s and o. The task we address in this paper is to generate
such a textual description y of the relationship instance r; given the KG. For this we
leverage a set of pairs X, where each € X is a pair of r; and ¢/, and ¥y’ is the
description of r;,. We describe how we obtain this set in Section 5.

We aim to generate descriptions that are valid (expressing a relationship that can
be found in the knowledge graph under the closed-world assumption), natural (gram-
matically correct), and informative, i.e., not just replicating the formal relationship but
providing additional contextual information where possible.

We conclude our task definition with an example. Assume that we are given the
relationship instance starsInFilm(BradPitt, Troy). A possible description of this re-
lationship instance is the following: “Brad Pitt appeared in the American epic adventure
film Troy.” This description not only contains mentions of the entities of the relation-
ship instance and a verbalization of the relationship (“appeared in”), but also mentions
of other entities that provide additional context. In particular, it contains mentions of
Troy’s type (Film), its genres (Epic, Adventure), and its country of origin.

4 Generating textual descriptions

In this section we detail our method which consists of three main steps. First, we enrich
the description y for each pair (r;,y’) € X with additional entities from the KG
(Section 4.1). Second, we use K and the set X to create a set of sentence templates 7.
for the relationship r (Section 4.2). Third, given a new relationship instance, we use 7.
and KC to generate a description (Section 4.3).

4.1 Enriching the textual descriptions In this step we perform entity linking to
enrich the description y’ for each pair {r;/,y’) € X with additional entities from the
KG. This is done in order to facilitate the template creation step (Section 4.2). Each ¢/’
is a sentence that is about an entity e € £ and in the context of this paper we obtain
these sentences from Wikipedia as our KG provides explicit links to Wikipedia articles.
Although Wikipedia articles already contain explicit links to other articles and thus
entities, these links are quite sparse. Therefore, we apply an algorithm for entity linking
similar to [22].

Since ' originates from a Wikipedia article that is about a specific entity, we restrict
the candidate entities (i.e., the entities that we consider adding to enrich y’) to ¢ itself,
the in-links and out-links of the article of e in the Wikipedia structure, and the one-
hop and two-hop neighbors of e in the KG. We infer the surface forms of each entity
using the Wikipedia link structure, as is common in entity linking [14], and we also use

Table 2: Additional surface forms per entity type.

Entity type Surface form

Person “he” or “she”, person’s surname
Film “the film”

Music album “the album”

Music composition “the song”, “the track”

Algorithm 1 Template creation
Input: A set X, the knowledge graph KC
Output: A set of templates 7',
X]
: for (ry,y') € X do
K + BUILDENTITYDEPENDENCYGRAPH(y', K)
X'.append((ry,y', K))
C < CLUSTERENTITIES(X")
G + BUILDCOMPRESSIONGRAPH(X',)
P < FINDVALIDPATHS(G)
T+ {}
forp € Pdo
10: t + CONSTRUCTTEMPLATE(p, G, X')
11: if t # NULL then
12: Tr.add(t)

the aliases of each entity provided by the KG.? In order to increase coverage for e, we
enhance the set of surface forms of entity e using the rules in Table 2.

We iterate over the n-grams of the sentence that are not yet linked to an entity in
decreasing order of length; if the n-gram matches a surface form of a candidate entity,
we link the n-gram to the entity. If multiple entity candidates exist for a surface form, we
rank the candidate entities by the number of entity neighbors they have in the sentence
and select the top-ranked entity. Because of the very restricted set of candidate entities,
the linking is usually unambiguous (with only one entity candidate per surface form).*

S A A A e

2

4.2 Creating sentence templates In this step, we create a set of templates 7). for a
relationship r using the KG and the set of (r;/, ') pairs. The templates in 7). will be
used in the next step to generate a novel description for the relationship instance 7;.

A sentence template t is a tuple (k, [, R;), where (i) k = [ujus . . . u,] is a sequence,
such that Vu; € [: u; € VU &, (ii) [is a logical form in A-calculus that consists of all
the lambda variables in &;, at least one predicate and zero or more existential variables,
and (iii) R; is a set of relationship instances that support ¢.

The procedure we follow is outlined in Algorithm 1. First, we augment each (r;/, y’)
pair with an entity dependency graph K in order to capture dependencies between enti-
ties in a sentence (lines 1-4). Next, we build a mapping C' that maps each entity in each
sentence to a single cluster id (line 5). This is done in order to facilitate the detection
of useful patterns in the sentences since each sentence describes a relationship for a

* We tag the sentences with POS tags and ignore unigram surface forms that are verbs.
* A manual evaluation of this algorithm on a held-out, random sample of 100 sentences in our
dataset revealed an average of 93% precision and 85% recall per sentence.

producer.film

o

] f genre
Brad Pitt ‘&Q@ 12 Years a Slave Drama

&

()

N X
Deyye Le
A0S .
med, %\\“\'&& Film

Fig. 2: Entity dependency graph for the sentence ‘“Brad Pitt appeared in the drama
film 12 Years a Slave”. Nodes represent entities and edge labels represent predi-
cates (med; is a CVT entity).

particular entity pair. Then, we build a compression graph G (line 6) and use it to find
valid paths P (line 7). Finally, for each path p € P, we construct a template ¢ and add
it to the set of templates (lines 8—12). We now describe each procedure in Algorithm 1.

BUILDENTITYDEPENDENCYGRAPH(.) In order to build the graph K for a sentence
y', we retrieve all paths between each pair of entities mentioned in y’ from the KG and
add them to K. We only consider 1-hop paths and 2-hop paths that pass through a CVT
entity. Fig. 2 shows the entity dependency graph for an example sentence.

CLUSTERENTITIES(.) In order to obtain C, we consider all 2’ = (r;/, 3/, K) € X’
and map two entities in the same cluster if they share at least one incoming or outgo-
ing edge label in their corresponding entity dependency graph K. For example, in the
starsInFilm relationship, this procedure will create separate clusters for persons, films,
dates and CVT entities.

BUILDCOMPRESSIONGRAPH(.) In this step, we build a compression graph G =
(V, E) using the sentence y’ of each (r;,y’, K) € X’'. V is a set of nodes and E is a
set of edges. We follow a similar procedure to [6], in which each node holds a list of
(sid, pid) pairs, where sid is a sentence id and pid is the index of the word/entity in the
sentence. In our case a node can be a word or an entity cluster. We map two words onto
the same node if they have the same lowercase form and the same POS tag. We map
two entities on the same node if they have the same cluster id.

FINDVALIDPATHS(.) In order to find valid paths in the graph G, we set all the entity
cluster nodes as valid start/end nodes and traverse G to find a set of paths P from a start
to an end node. In order to build templates that are natural we enforce the following
constraints for the paths in P: (i) the path must contain a verb and (ii) the path must have
been seen as a complete sentence at least once in the input sentences. For example, given
the following sentences (the corresponding cluster id per entity are listed in brackets):

- yi: “Bruce_Willis[¢;] appeared in Moonrise_Kingdom[c3]”
— yh: “Liam_Neeson[c] appeared in the action[c3] film[c,] Taken[co]”
- y4: “Brad_Pitt[c;] appeared in the drama[cs] film[c4] 12_Years_a_Slave[c2]”

we obtain the following valid paths by traversing the graph:

— p1: “cp appeared in ¢3”
— pa2: “cy appeared in the c3 ¢4 c3”

Algorithm 2 CONSTRUCTTEMPLATE(.)

Input: A path p, the compression graph G, a set X', parameters o, 3
Output: A template ¢

I: Dy« |] > entity dependency graphs
2: R+] > relationship instances that support the template
3: for (ri,y',K) € X' do

4: if [SSUBSEQUENCE(p, 3, G) then

5: h < GETSUBSEQUENCE(p, y’, G) > get the actual subsequence
6: (s,0) < 1y > subject/object of the relationship instance
7 if CONTAINSLINK(h, s) and CONTAINSLINK (A, o) then

8: Dgy.append(K)

9: Ry.append(r;:)
10: if |R¢| < o then > too few relationship instances
11: return NULL
12: [<— BUILDLOGICALFORM(Dy,) > aggregate the entity dependency graphs
13: k < REPLACECLUSTERIDSWITHVARIABLES(p)
14: t = (k,1, Ry)

CONSTRUCTTEMPLATE(.) Algorithm 2 outlines the procedure for constructing a
template ¢ from a path p. First, for each (r;,y’, K) € X', we check whether ¢’ is a
(possibly non-continuous) subsequence h of path p by using the positional information
of each node in p from G S Ifit is, we check whether A contains links to both the subject
and the object of the relationship instance r;. If it does, we store the entity dependency
graph and the relationship instance. Next, if the number of instances is less than a pa-
rameter o, we consider the template to be invalid. Subsequently, we build the logical
form [by aggregating the entity dependency graphs D,. Entity nodes that were part of
the path p become lambda variables (nodes constructed from subject and object entities
have special identifiers). Entity nodes that were not part of the path p (CVT entities)
become existential variables. We ignore edges appearing in less than |D,| - 3 entity de-
pendency graphs. Lastly, we replace the cluster ids in p with the corresponding lambda
variables to obtain a sequence k.

Fig. 3 shows the logical form of a template constructed using the example sentences
y}, y5 and y4 and their corresponding instances in graphical form (8 = 0.5). Note that
the edge “producer.film” has been eliminated since it only appears in one out of the
three instances.

actor.film performance.actor
L
\/

performance.film film.starring

Fig. 3: Logical form of the template constructed using p, and v/, y5, y4 (with their
corresponding relationship instances). £ =“z,,;; appeared in the x3 x4 7,;”.
Lambda variables are shown in circles and existential variables in rectangles.

> For example, the path p; is a subsequence of /5.

4.3 Generating the description In this step we generate a novel description for a
relationship instance r; using the set of templates 7, and the knowledge graph . This
comes down to selecting the template from 7. that best describes the relationship in-
stance r; and filling it with the appropriate entities.

The procedure is as follows. First, we rank the templates in 7. for the relationship
instance using a scoring function f(r;,t). Subsequently, for each template t = (k,, Ry)
we replace the subject and object lambda variables in [to obtain I’ = l[zsup; =
S, Zop; = 0]. We then query the knowledge graph K using !’ and if at least one instanti-
ation of [’ exists, we randomly pick one and replace all the entity variables in k with the
entity names to generate the description y, otherwise we proceed to the next template.
As an example, assume we are given the instance r; = starsInFilm(Ryan_Reynolds,
Deadpool) and we consider the template shown in Fig. 3. A possible instantiation of
the template for this relationship instance will result in the description “Ryan Reynolds
appeared in the comedy film Deadpool”.6

The template scoring function f(r;, t) returns a score for a relationship instance r;
and template ¢. As we want to generate descriptions that are valid under the closed-
world assumption of the KG, we promote templates that are semantically closest to the
relationship instance. For a new relationship instance r; we extract binary features for
each entity in the r;. Recall that r; has two or more entities (subject s, object o and
possibly a CVT entity z). For each entity e of r;, we extract all triples (e, p, e’) from
the KG KC. We restrict the feature space by discriminating between entity attributes and
entity relations depending on the predicate p as in [13]. If the predicate p is an attribute
(e.g., “gender”), we use the complete triple as a feature (e.g. (s, gender, female)). If
the predicate p is a relation (e.g., “date_of_death”), we only keep the subject and the
predicate of the triple as a feature (e.g., (e, person.date_of _death)). We also add a
count feature for the relation predicates (e.g., (s, person.children, 2), i.e., a person has
two children). We denote the resulting binary vector for r; as vec(r;). We obtain a
vector vec(t) for template ¢ by summing the vectors of all the instances R; of t. We also
compute a vector vec_tfidf (t) that is a TEIDF weighted vector of vec(t), where IDF
is calculated at the template level. Based on these ingredients, we define two scoring
functions:

— Cosine Calculates the cosine similarity between vectors vec(r;) and vec_t fidf (t).
— Supervised Learns a scoring function using a supervised learning to rank algo-
rithm. We treat r; as a “query” and ¢ as a “document.”

We create training data for the supervised algorithm as follows. Recall that each r; is
coupled with a description 3. For each r;, we assign a relevance label of 3 for templates
that best match y (measured by the number of entities) and a relevance label of 2 for the
rest of the templates that match y. In order to create “negative” training data, we sample
templates that are dissimilar to the ones that match y in the following way. First, we
calculate the average vector of all the templates that match y and build a distribution
of templates based on the cosine distance from the average vector to each of the tem-
plates in 7). (excluding the ones that match y). Lastly, we sample at most the number of

® Note that there might be multiple instantiations (e.g., Deadpool is also a science fiction film)
and selecting the optimal one depends on the application—we leave this for future work.

matching templates from the resulting distribution and assign them a relevance label of
1 (we ignore templates that have a cosine similarity to the average vector greater than
0.9). For the supervised model we use the following features: each element/value pair
in vec(r;), the cosine similarity between vectors vec(r;) and vec_tfidf (¢), the words
in ¢, the number of entities in ¢ and the size of R;. We use LambdaMART [23] as the
learning algorithm and optimize for NDCG@1.”

5 Experimental setup
In this section we describe our experimental setup.
5.1 Datasets We use an English Wikipedia dump dated 5 February 2015 as our
document corpus. We perform sentence splitting and POS tagging using the Stanford
CoreNLP toolkit. We use a subset of the last version of Freebase as our KG [4]: all the
triples in the people, film and music domains, as these are well-represented in Freebase.
In order to create an evaluation dataset for our task, we first need a set of KG rela-
tionships. We rank the predicates in each domain by the number of instances and keep
the 10 top-ranked predicates. We exclude trivial predicates such as “dateOfDeath”. We
then use the predicates to manually construct the logical forms of the relationships (see
Figure 1 for an example). Second, we need a set of (r;/,3’) pairs for each relationship
r, where r;; = r(s’,0’) is an instance of relationship r, s’ and o’ are entities and y’ is
a description of r;,. To this end, for each relationship r, we randomly sample 12 000
relationship instances from the KG. For each relationship instance r;,, we pick the first
sentence in the Wikipedia article of the subject entity s’ that contains links to both s’
and o’. If such a sentence does not exist, we proceed to the next instance. We manually
inspected a subset of the sentences selected with this heuristic and the quality of the
selected sentences was relatively good. Our final dataset contains 10 relationships and
90058 (r;s, ') instances in total and 8 187 instances on average per relationship. We
randomly select 80% of each relationship sub-dataset for training and 20% for testing.
5.2 Evaluation metrics We perform two types of evaluation: automatic and man-
ual. For automatic evaluation we use METEOR [9], ROUGE-L [11] and BLEU-4 [16]
as metrics. METEOR was originally proposed in the context of machine translation but
has also been used in a task similar to ours [19]. ROUGE is a standard metric in summa-
rization and BLEU is widely used in machine translation and generation. As is common
in text generation [8], we also employ manual evaluation. We ask human annotators to
annotate each output sentence on three dimensions: validity under the KG closed-world
assumption (0 or 1), informativeness (1-5) and grammaticality (1-5). One human an-
notator (not one of the authors) annotated 11 generated sentences per relationship per
system (440 sentences in total).
5.3 Compared approaches We compare 4 variations of our method. The variations
differ in the way they rank templates for a given relationship instance. The first variation
(Random) ranks the templates randomly. The second (Most-freq) ranks templates by
the number of relationship instances that support the template. The third (Cosine) ranks
templates based on the cosine similarity between the vectors of the relationship instance
and the template (Section 4.3). The fourth (Supervised) ranks templates using a learning

7 For this method we use 20% of the training data as validation data. The same test data is used
for all methods.

Table 3: Automatic evaluation results, averaged per relationship.
Method BLEU METEOR ROUGE

Random 1.14 16.56 24.13
Most-freq 0.13 13.99 21.96
Cosine 1764 17.37 25.844
Supervised 2.144 19.18% 26.544

Table 4: Manual evaluation results, averaged per relationship.

Method Validity Informativeness Grammaticality

Random 0.4545 1.98 3.67
Most-freq 0.5000 1.60 3.62
Cosine 0.56364 2.05 4.00
Supervised 0.58184 2.184 3.90

to rank model (Section 4.3), for which we use LambdaMART with the default number
of trees (1000). We set « = 20 and 5 = 0.5 (Section 4.3). We depict a significant
improvement in performance over Random with 4 (paired two-tailed t-test, p < 0.05).

6 Results

In this section we describe our experimental results. We compare all methods discussed
previously, using the automatic and manual setups, respectively.

6.1 Automatic evaluation Table 3 shows the automatic evaluation results. We ob-
serve that Supervised and Cosine outperform Random and Most-freq on all metrics.
This is expected since the former two try to capture the semantic similarity between
a relationship instance and a template. Although Supervised consistently outperforms
Cosine, the differences between Cosine and Supervised are not significant.

We also observe that the scores for the automatic measures are relatively low. This
is because of two reasons: (i) we generally generate much shorter sentences than the
reference sentence as not all information that appears in the reference sentence is rep-
resented in the KG, and (ii) since the reference sentences are extracted automatically,
some of the reference sentences describe a minor aspect of the relationship or do not
discuss the relationship at all.

6.2 Manual evaluation Table 4 shows the results for manual evaluation. The results
follow a similar trend as in the automatic evaluation; Supervised and Cosine outperform
Random and Most-freq on all metrics. Supervised significantly outperforms Random in
terms of validity and informativeness. The differences between Cosine and Supervised
are not significant.

6.3 Analysis We have also examined specific examples and identify cases where the
best performing approach (Supervised) succeeds or fails. In terms of validity, it succeeds
in matching attributes of the relationship instance and the template. E.g., in the context
of the relationship parentOf, it correctly figures out what the genders of the entities
are and the semantically valid expression of the relationship between them, often better
than Cosine, as illustrated by the following example:

(Supervised) “Emperor Francis I (1708 - 1765) was the father of Emperor Leopold IT”
(VALID)

(Cosine) “Emperor Francis I was the son of Emperor Leopold II” (INVALID)

Supervised benefits from training a model that combines multiple features such as the
template words with attributes of the relationship instance to describe whether the re-
lationship is still ongoing or not. One of the main cases where Supervised fails is in
ranking a relationship instance in a temporal dimension with regards to other relation-
ship instances, as illustrated by the following example for the childOf relationship:

“Thomas Howard was the second son of Henry Howard and Frances de Vere.”
(INVALID: Thomas Howard was the first son of Henry Howard)

The fact that our best performing approach (Supervised) has a relatively low validity
score (0.5818) shows that there is room for improvement in capturing the semantic
similarity between a relationship instance and a template.

In terms of informativeness, Supervised succeeds in offering contextual information
about the relationship instance, such as dates, locations, occupations and film genres.
The fact that informativeness scores are relatively low is because they are dependent
on validity: when a generated sentence was assigned a validity of score 0, it was also
assigned an informativeness score of just 1.

Grammaticality scores are high for all the systems with no significant differences.
This is expected as the templates were generated using the same procedure for all the
compared systems. Mainly, grammaticality is harmed when some entities in the gener-
ated sentence have the wrong surface form (e.g., ‘Britain’, ‘British’), which is not sur-
prising as we do simple surface realization (deciding which surface form of the entity
best fits with the generated sentence) and only use the entity names as surface forms.

7 Conclusion

We have addressed the problem of generating descriptions of entity relationships from
KGs. We have introduced a method that first creates sentence templates for a specific
relationship, and then, for a new relationship instance, it generates a novel description
by selecting the best template and filling the template slots with the appropriate entities
from the KG. We have experimented with different scoring functions for ranking tem-
plates for a relationship instance and performed an automatic and a manual evaluation.

When using information about the relationship instance and the template taken from
the KG, both automatic and manual evaluation outcomes are improved. A supervised
method that uses both KG features and other template features (template words, number
of entities) consistently outperforms an unsupervised method on all automatic evalua-
tion metrics and also in terms of validity and informativeness.

As to future work, our error analysis showed that we need more sophisticated mod-
eling for capturing the semantic similarity between a relationship instance and a tem-
plate, especially for capturing temporal dimensions that also involve other relationship
instances. We also want to explore more sophisticated methods for selecting the correct
surface form for an entity to improve grammaticality. Finally, we aim to evaluate our
method on generating descriptions for less popular KG relationships.

Acknowledgments. This research was supported by the Netherlands Institute for Sound
and Vision and the Netherlands Organisation for Scientific Research (NWO) under pro-
ject nr. CI-14-25. All content represents the opinion of the authors, which is not neces-
sarily shared or endorsed by their respective employers and/or sponsors.

Bibliography

(1]
[2]
(3]
(4]
[3]
[6]
(71
(8]
(9]
[10]
(11]
[12]
[13]
[14]

[15]

[16]
[17]
(18]
[19]
[20]
(21]
(22]
(23]

[24]

T. Althoff, X. L. Dong, K. Murphy, S. Alai, V. Dang, and W. Zhang. Timemachine: Timeline
generation for knowledge-base entities. In KDD, 2015.

R. Blanco, B. B. Cambazoglu, P. Mika, and N. Torzec. Entity recommendations in web
search. In ISWC, 2013.

R. Blanco, G. Ottaviano, and E. Meij. Fast and space-efficient entity linking for queries. In
WSDM, 2015.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively
created graph database for structuring human knowledge. In SIGMOD, 2008.

L. Fang, A. D. Sarma, C. Yu, and P. Bohannon. Rex: explaining relationships between entity
pairs. In VLDB, 2011.

K. Ganesan, C. Zhai, and J. Han. Opinosis: a graph-based approach to abstractive summa-
rization of highly redundant opinions. In COLING, 2010.

D. Gkatzia, O. Lemon, and V. Rieser. Natural language generation enhances human
decision-making with uncertain information. In ACL, 2016.

I. Konstas and M. Lapata. A global model for concept-to-text generation. JAIR, 48:305—
346, 2013.

A. Lavie and A. Agarwal. METEOR: An automatic metric for MT evaluation with high
levels of correlation with human judgments. In WMT, 2007.

R. Lebret, D. Grangier, and M. Auli. Neural text generation from structured data with
application to the biography domain. In EMNLP, 2016.

C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out: Proceedings of the ACL-04 workshop, 2004.

T. Lin, P. Pantel, M. Gamon, A. Kannan, and A. Fuxman. Active objects: Actions for
entity-centric search. In WWW, 2012.

Y. Lin, Z. Liu, and M. Sun. Knowledge representation learning with entities, attributes and
relations. In IJCAI, 2016.

E. Meij, W. Weerkamp, and M. de Rijke. Adding semantics to microblog posts. In WSDM
2012, 2012.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine learn-
ing for knowledge graphs: From multi-relational link prediction to automated knowledge
graph construction. Proc. of the IEEE, 104(1):11-33, 2016.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: A method for automatic evaluation
of machine translation. In ACL, 2002.

D. Pighin, M. Cornolti, E. Alfonseca, and K. Filippova. Modelling events through memory-
based, open-ie patterns for abstractive summarization. In ACL, 2014.

E. Reiter, R. Dale, and Z. Feng. Building Natural Language Generation Systems. MIT
Press, 2000.

G. Saldanha, O. Biran, K. McKeown, and A. Gliozzo. An entity-focused approach to gen-
erating company descriptions. In ACL, 2016.

A. Tombros and M. Sanderson. Advantages of query biased summaries in information
retrieval. In SIGIR, 1998.

A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams. Fast generation of result snippets
in web search. In SIGIR, 2007.

N. Voskarides, E. Meij, M. Tsagkias, M. de Rijke, and W. Weerkamp. Learning to explain
entity relationships in knowledge graphs. In ACL-IJCNLP, 2015.

Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Ranking, boosting, and model adaptation.
Techn. report, Technical report, Microsoft Research, 2008.

W.-t. Yih, M.-W. Chang, X. He, and J. Gao. Semantic parsing via staged query graph
generation: Question answering with knowledge base. In ACL, 2015.

