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ABSTRACT
Keyphrases are short phrases that reflect the main topic of a doc-
ument. Because manually annotating documents with keyphrases
is a time-consuming process, several automatic approaches have
been developed. Typically, candidate phrases are extracted using
features such as position or frequency in the document text. Many
different features have been suggested, and have been used indi-
vidually or in combination. However, it is not clear which of these
features are most informative for this task.

We address this issue in the context of keyphrase extraction from
scientific literature. We introduce a new corpus that consists of full-
text journal articles and is substantially larger than data sets used
in previous work. In addition, the rich collection and document
structure available at the publishing stage is explicitly annotated.
We suggest new features based on this structure and compare them
to existing features, analyzing how the different features capture
different aspects the keyphrase extraction task.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.1 Content Anal-
ysis and Indexing; H.3.7 Digital Libraries; I.2 [Artificial Intelli-
gence]: I.2.7 Natural Language Processing

General Terms
Algorithms, Experimentation

Keywords
Keyphrase extraction, Scientific literature search

1. INTRODUCTION
Keyphrases are short phrases that indicate the main topic of a

document [10]. Initially, curator-assigned keyphrases were used
to facilitate information access [14, 21]. Today, keyphrases are
particularly important for exploratory search—to quickly get an
overview of the contents of a collection, and for discovering in-
formation objects in the case of under-specified information needs.
In the context of scientific literature search, keyphrases appear to be
one of the clues that researchers use to make relevance decisions,
and have been found beneficial for exploring digital libraries [1,
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11]. Methods similar to keyphrase extraction have been applied to
detect key concepts, for example to improve the precision of re-
trieval with long search queries [2].

As manual assignment of keyphrases is a tedious process, meth-
ods that automatically suggest keyphrases have been developed [13,
27, 30]. Keyphrase assignment to documents can be closed or open.
The former draws keyphrases from a controlled vocabulary and as-
signed keyphrases do not necessarily occur in the document. In this
paper, we focus on open keyphrase extraction where any phrase
contained in the document is a potential candidate. Common ap-
proaches include selecting phrases on the basis of features such as
the position or frequency of occurrence within the document. Such
features can be combined, e.g., using classification or regression.

Although a number of features have been used for keyphrase
extraction in the past, we know little about what makes a good
keyphrase. Different studies make different (implicit) assumptions
on what makes a good keyphrase, and it is difficult to objectively
compare approaches based on different assumptions. For example,
Shah et al. [23] assume that words representative of a document
co-occur frequently with many other words, while Tomokiyo and
Hurst [24] assume that keyphrases are those phrases that best dis-
tinguish a document from a background corpus. Features reflecting
these intuitions have been developed, but not compared.

We address this problem by systematically evaluating and com-
paring features for keyphrase extraction on a new document collec-
tion that will be released with the publication of this paper, along
with the features we have extracted. The collection consists of sci-
entific journal articles with author-annotated keyphrases and is sub-
stantially larger than the collections previously considered.

Besides size, our document collection differs from previous ones
in that it preserves the clean collection and document structure
available at the publishing stage, which we utilize to derive new
features that capture information contained in this structure. We ex-
plore whether this structural information captures additional char-
acteristics of keyphrases and can be used to improve keyphrase ex-
traction. Our models of these structural features are formulated in
a probabilistic way which allows natural interpretations of results.

We follow a two-step approach to keyphrase extraction: (i) ex-
tract candidate phrases from the document text and (ii) rank the
candidate list according to features assumed to reflect the phrases’
likelihood of being assigned as a keyphrase. We consistently view
step two as a ranking problem and discuss implications of this view.

To summarize, we address the following research questions:

• How do existing features and feature combinations perform
on the new, substantially larger data collection?

• How do our models based on collection structure compare to
existing features and can they be used to improve keyphrase
extraction performance?

• How do our models based on document structure compare to



existing features and can they be used to improve keyphrase
extraction performance?

The remainder of this paper is organized as follows. In Section 2
we give an overview of existing keyphrase extraction approaches,
focusing on the features used for this task. We describe our docu-
ment collection in Section 3, detail our approach in Section 4 and
discuss the features we use in Section 5. We present and analyze
our results in Section 6 and end with a concluding section.

2. RELATED WORK
Various approaches to keyphrase extraction have been explored

in the past, which can be divided into unsupervised methods and
methods that apply supervised learning. Unsupervised methods fil-
ter or rank candidate phrases according to a scoring function. Ap-
proaches using supervised learning train a machine learning algo-
rithm to predict whether a phrase is a keyphrase or not. Both types
of approaches can be viewed and evaluated within our view of key-
phrase extraction as a ranking problem. Below, we introduce other
approaches and describe the features and data sets used. We do
not consider methods that use external knowledge sources such as
thesauri or the web [8, 17, 27].

2.1 Supervised Methods
Turney [26] defines automatic keyphrase extraction as “the auto-

matic selection of important, topical phrases from within the body
of a document.” He formulates the task as a supervised learning
problem [25, 26]. Based on labeled example phrases, a machine
learning algorithm learns a function that classifies phrases as posi-
tive (i.e., is a keyphrase) or negative (is not a keyphrase) examples.
The author uses a set of 9 features related to position, frequency,
and syntactical information. Performance is evaluated on 5 man-
ually annotated corpora including journal articles, web pages, and
email, and varying sizes of 20–141 documents.

Witten et al. [30] develop the Kea keyphrasing system that uses
a Naive Bayes (NB) classifier. The authors find two features to
perform well on this task: a combined TF .IDF score, and the
normalized position of the first occurrence of a phrase within the
document. The system is evaluated on two of the corpora used by
Turney [26]. Despite the reduced size of the feature set, perfor-
mance is found to be statistically equivalent to that of Turney [26].
We compare our results with a recent version of Kea in Section 6.

Hulth [13] evaluates the contribution of linguistic features and
compares three ways of extracting phrases (n-grams, part-of-speech
(PoS) patterns, and noun phrases), and considers different features
(TF , IDF , position of first occurrence, PoS sequence). The doc-
ument collection used for training and evaluation (2000 scientific
abstracts) appears to be the largest used for this task to date.

Few approaches have made use of structural information. Wang
and Peng [28] introduce markup features to extract keyphrases from
web pages. In addition to TF and IDF , paragraph frequency (the
number of paragraphs a phrase occurs in) and title frequency (the
number of times a phrase occurs in the page title or headings)
are obtained from the HTML markup. Nguyen and Kan [19] use
similar features for keyphrase extraction from scientific publica-
tions. They use baseline features used previously [30] and domain-
specific morphological features. They also use two structural fea-
tures: in title and a section occurrence vector, which consists of the
term count for 14 generic sections, such as abstract and introduc-
tion. The complete feature set leads to significant improvements in
classifier accuracy over the Kea baseline.

Below (cf. Section 4), we consider and evaluate all of the fea-
tures discussed so far, except for morphological features. Based
on the results obtained by Hulth [13], we believe that such this in-

formation is already captured by our candidate extraction approach
which will be detailed in Section 4.

2.2 Unsupervised Methods
Unsupervised methods for keyphrase extraction have been de-

veloped analytically or based on the analysis of sample data. Typ-
ically, candidate words or phrases are extracted from a document
using clues such as PoS [16, 23], punctuation marks, stop words,
term counts, or combinations of these criteria [7, 24]. The candi-
dates are assigned a score, ranked by this score, and the top-ranked
phrases are selected as keyphrases.

KP-Miner assigns scores to phrases based TFIDF , position of
first occurrence, and a boosting term that increases the chance of
longer phrases being selected (as TF is found to otherwise favor
single terms) [7]. The system is evaluated on the collection used
by Turney [26] and significantly improves upon the performance
of Kea, which is remarkable given that the system uses a linear
combination of essentially the same features.

Several graph-based approaches have been proposed based on
the assumption that good keyphrases are more “salient”, or more
“central” to a document. These intuitions are modeled using word
co-occurrences in sentences [16, 23, 31]. Matsuo and Ishizuka [16]
use co-occurrences of frequent phrases. Sentences within a docu-
ment are clustered and phrases are extracted from these sentences.
Candidate phrases are ranked using the χ2 test of independence
between expected and observed co-occurrences of frequent phra-
ses. The approach is evaluated on 20 documents and performance
is comparable to TFIDF .

Shah et al. [23] build on a similar intuition to extract (single term)
keywords from scientific journal articles. Per document section,
keywords are extracted by calculating the centrality of each noun,
which is defined by the proportion of a word co-occuring with other
words in the same sentence, following [20]. The centrality score is
normalized per document, and terms that exceed a threshold are
taken to be keywords. The authors also analyze the distribution of
keywords in different document sections; while abstracts typically
have the highest density of keywords, the remainder of an article
contains a much larger number of keywords; the kinds of keywords
that can be extracted differ between sections.

Tomokiyo and Hurst [24] propose a language modeling frame-
work for keyphrase extraction. The “informativeness” of a phrase
for a document is determined by the KL-Divergence between a
foreground model (the document) and a background model (the
collection). The “phraseness” of a sequence of words is determined
by the KL-Divergence between a unigram and an n-gram model. A
linear combination of these two scores is suggested and supported
through a qualitative evaluation of news articles. The approach has
not yet been evaluated in the context of keyphrase extraction, but on
the related task of back-of-the-book index generation good result
were achieved using KL-Divergence, the χ2 test, and TFIDF [5].

Below, we use some of the features derived from the unsuper-
vised methods listed above. We include keyphrase length, based
on the observation that single terms may otherwise be preferred
[7]. We include one co-occurrence measure and choose the cen-
trality score from [23], adjusted for phrases. We implement KL-
Divergence corresponding to the measure of informativeness in [24]
and χ2 as proposed in [5], and also explore other probabilistic mea-
sures. We do not consider phraseness scores, as this aspect of can-
didate extraction is covered in our candidate extraction step.

Finally, keyphrase extraction is loosely related to automatic hy-
pertext link generation, specifically to the identification of candi-
date anchor texts. Recent work explores features such as link prob-
ability, relatedness, disambiguation confidence, generality, and lo-
cation and spread [18]; while many of these are specific to link
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Figure 1: Number of documents vs. number of keyphrases.
Most documents have between 3 and 6 keyphrases.
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Figure 2: Number of keyphrases vs. keyphrase length. Typical
keyphrases consist of 1 to 3 words.

generation, the latter two make sense for keyphrase extraction and
we also use them.

3. DOCUMENT COLLECTION
We run our experiments on a collection of scientific journal ar-

ticles provided by Elsevier.1 The collection consists of 14,724 ar-
ticles from 26 journals in the Food Informatics and Computer Sci-
ence domains published between 1995 and 2005. This collection
will be made available to the research community with publication
of this paper.2 The rich collection and document structure avail-
able at the publishing level is preserved in this data set. Collection
structure refers to metadata that places documents in the context in
which they are published, e.g., there are natural groupings by jour-
nal and issue, and an ordering by publication date. Document struc-
ture is provided in the form of XML markup according to a publicly
available DTD.3 Document annotations serve different functions,
e.g., there are elements indicating article abstracts, individual sec-
tions, lists and list items, italicized terms, individual elements of
mathematical formulas, references and citations, and many more.
Overall, there are more than 100 XML codes, although not each
document is marked up with all elements.

The collection spans a time-frame during which an increasing
number of scientific journals started to make articles available on-
line and this development is reflected in the collection. A growing
part of articles was being digitized, starting, e.g., with publication
records only, then including abstracts, and more recently full-text
documents. Of the documents, 81% are available with abstracts,
77% include references, and 48% are available as full text.

The documents’ authors have annotated 8,479 (58%) of the doc-
uments with between 1 and 146 keyphrases (mean: 6.33, mode: 4,
see Figure 1). More than 75% of the documents with keyphrases
have between 3 and 6 keyphrases. Keyphrases were are between 1
and 142 terms long. Very long keyphrases result from a small num-
ber of outliers where definitions are included as keyphrases. We
1http://www.elsevier.com
2URL removed for anonymity.
3http://www.sciencedirect.info/techsupport/
xmlsgml/dtd45/art452.dtd.txt

ignore such outliers, automatically removing keyphrases of length
greater than 10 terms. The remaining keyphrases have an aver-
age of 2.13 terms (Figure 2). In the documents we analyzed there
are 53,651 keyphrases; of these, 38,222 (71.24%) also occur in the
document content and can (theoretically) be extracted.

For our experiments we use a subset of the collection, consist-
ing of the 5,504 documents for which both the document’s full text
and manually annotated keyphrases are available. We make this
selection, as opposed to also including articles for which only key-
phrases and abstract are provided, to avoid any possible bias.

4. APPROACH
Keyphrase extraction typically follows a two-step approach. First,

candidate phrases are selected from the document text (1), then the
best candidates are selected (2). Our main focus is on the second
step. We view the task of identifying keyphrases from a set of can-
didate phrases as a problem of ranking candidate phrases according
to their probability of being selected as a keyphrase. This probabil-
ity can be expressed as p(t = K|D), where K denotes the event
that a phrase t drawn from document D is assigned as a keyphrase
to this document (cf. Table 3 for an overview of our notation).

We explore different ways of estimation, where we call individ-
ual scores for estimation features. We detail the groups of features
used in our work in Section 5 below. Before this, we describe our
preprocessing steps (Section 4.1), our method of selecting candi-
date phrases from documents (Section 4.2), the method for combin-
ing multiple features into one ranking (Section 4.3), and evaluation
measures (Section 4.4).

4.1 Experimental Setup and Preprocessing
As we will experiment with both ranking keyphrases using in-

dividual features and combinations of features using supervised
learning, we divide the collection into development, training and
test set to avoid overestimating the performance of learned combi-
nations. The evaluation and comparison of individual features can
be seen as manual feature selection. As is common in automatic
feature selection we perform this step on the training set [9].

In our experimental setup we model the scenario where we have
a number of existing journal issues available for analysis and train-
ing, and want to predict keyphrases for a set of unseen documents
published in subsequent issues. Therefore we split the collection
taking publication date and journal issue into account.

size number of documents

Development 20 % 1120
Training 60 % 3277
Test 20 % 1107

Table 1: Overview of development, training and test set used in
our experiments. The collection was split by journal and issue
as close as possible to the target percentage.

We take the first 20% of the issues per journal as development set,
the next 60% as training set, and the last 20% as the test set (Ta-
ble 1). We use a relatively large training set because our main focus
is the comparison of a large set of individual features and we want
to avoid spurious effects that may result from sparse data.

All documents in the collection are pre-processed and indexed
identically, as follows. Extraction of phrase positions and frequen-
cies was implemented on top of Lucene.4 The XML documents
were parsed and the textual content of each XML element was in-

4http://lucene.apache.org/

http://www.elsevier.com
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dexed as a separate field (with stemming, but without stopword re-
moval). In this way elements can be searched, and we can also
retrieve the full text content of a specified element. We use “the
full text of a document” to refer to the combined content of a doc-
ument’s title, abstract and section fields; otherwise, we refer to in-
dividual elements by name.

We apply sentence-splitting and PoS-tagging using an off-the-
shelf software package.5 Stemming is performed using the imple-
mentation of the snowball stemmer included with Lucene.

4.2 Candidate Selection
The first step in keyphrase extraction is to select candidate phra-

ses from the document text. We compare existing methods in order
to identify a method that achieves a good trade-off between preci-
sion and recall. Ideally, we want to obtain a large set of candidate
phrases to maximize recall. However, a large number of candidate
phrases results in a large processing overhead, as features for all
candidates have to be calculated.

To select candidate phrases for a given document we take the
full text content of the document, pre-processed as described above
(see Section 4.1), and apply one of the following strategies:

• All n-grams: for each sentence, we generate all possible sub-
sequences of up to n words.

• Filtered n-grams: we generate all n-grams, as above, and ac-
cept those that follow certain PoS patterns [11].

• PoS patterns: we extract all PoS patterns that occur as key-
phrases in the first 10% of the corpus and use this list of pat-
terns to filter the n-grams generated from each sentence [13].

We tune and evaluate candidate selection strategies using our de-
velopment set. We split the development set in half, and tune the
PoS patterns on the first half, corresponding to the first 10% of the
collection. The approaches are then tested on the second half, cor-
responding to the second 10% of the collection (Table 2).

Method candidates correct recall prec.

All 3-grams 4,735,793 2,208 0.7449 0.0006
All 5-grams 9,882,514 2,284 0.7705 0.0003
All 10-grams 21,196,347 2,293 0.7732 0.0001
Filtered 3-grams* 1,437,186 2,186 0.7385 0.0018
Filtered 5-grams 2,825,797 2,256 0.7622 0.0010
Filtered 10-grams 5,896,621 2,265 0.7649 0.0005
PoS patterns 1,206,078 2,166 0.7296 0.0021

Table 2: Performance of different candidate selection methods
on the development set. The method used in subsequent exper-
iments is marked with *.

As expected, we achieve the highest recall using all n-grams but at
very low precision. The highest recall that can be achieved on the
data set is 77.32%: the missing keyphrases are not contained in the
document text and simply cannot be assigned using an extraction-
based approach. These typically include morphological variations
that are not collapsed through stemming, or words that are broad
descriptions of a document topic, too broad to occur in running text
and more comparable to generic categories.

In comparison with previous work, our recall score after candi-
date selection is slightly lower [11, 13] and precision is substan-
tially lower [13]. Our low precision stems from the fact that we
select candidate phrases from full texts, not just abstracts. Filtered
3-grams is the candidate selection method of choice as it combines
high recall and a reasonable number of candidate phrases. .
5http://alias-i.com/lingpipe

After applying candidate selection, we obtain a list of candidate
phrases per document. The next step is to extract features for each
phrase, which will be detailed in Section 5.

4.3 Initial Feature Combinations
While the main focus of our paper is to systematically compare

individual features, we find features that perform lower than ex-
pected and for which we hypothesize that they may be particularly
useful in combinations. For an initial exploration of these hypothe-
ses we evaluate a small number of feature combinations.

In the past, good results have been achieved with combinations
of a few relatively simple features, such as TF .IDF and position of
first occurrence [11]. The Kea system, which generates keyphrases
based on these features (the current version also uses keyphrase
length), is typically used as the baseline in keyphrase extraction [7,
19]. In our combination experiments we aim to find out wether
combinations of features can improve over this baseline, and which
combinations are promising.

For our classification experiments we make use the Weka toolkit
[29]. For comparison with the Kea system we run our experiments
using the same classifier setup as used in Kea, namely Regression
by Discretization in combination with the Naive Bayes classifer.
Naive Bayes assumes features to be independent and classifies in-
stances based on the probability of the feature values given each
class. The regression component allows output of probability esti-
mates which we use to rank the resulting keyphrases.

4.4 Evaluation
Our choice of evaluation measures is based on our view of key-

phrase extraction as a ranking problem. Previously, keyphrase ex-
traction has been evaluated using the number of correctly identified
keyphrases and measures typical for classification, such as preci-
sion and recall (and sometimes f-score). These measures are based
on evaluating sets, where there is no ordering in the returned pos-
itive and negative instances. A problem with these measures is
that there typically is a threshold that needs to be determined, ei-
ther beforehand or through tuning, to control how many keyphra-
ses an approach to return. Depending on the application, different
thresholds may be appropriate, and for comparing methods, an ar-
bitrary threshold needs to be chosen. For these reasons we com-
plement these set-oriented evaluation measures with measures that
take ranking into account. We propose the use of evaluation mea-
sures for ranked lists as they are typically used in IR:

• Mean reciprocal rank (MRR) is the inverse of the rank of
the first correctly returned keyphrase, averaged over all test
documents.

• Precision at N (P@N) is the portion of correctly identified
keyphrases returned within the top N results.

• Mean average precision (MAP) is the average precision at
N , where N takes on the ranks at which correct keyphrases
are returned, averaged over all documents.

As some of the new features we propose cannot be generated for
all documents, in particular those that use XML markup that is not
used in all documents, we also report coverage: the portion of doc-
uments for which keyphrase suggestions were generated. In case
coverage is under 100% we average the remaining evaluation mea-
sures only over these covered documents.

We evaluate the top 100 results of the ranked lists of keyphrase
suggestions against the author-annotated keyphrases supplied with
the documents. For individual features, we rank phrases by that
feature in ascending and descending order and evaluate the top re-
sults of both lists. For combinations we sort by the output score of
the learner, where higher scores are ranked at the top. The set of

http://alias-i.com/lingpipe


all annotated keyphrases is used as recall base, so the upper bound
on recall is around 75%, depending on the keyphrases that occur in
the document and are selected by the candidate selection method.
We evaluate using exact phrase matching, without stemming.

5. FEATURES
In this section we detail the concepts and intuitions behind the

features we consider for ranking keyphrases for a given document.
As explained in Section 1, an analysis of the performance of indi-
vidual features can help explain what makes a good keyphrase, and
can inform the development of effective approaches for keyphrase
extraction.

We have described how the collection was preprocessed and in-
dexed, and a list of candidate phrases was selected from the docu-
ment’s full text. For each phrase, we extract the features detailed
below. The phrases for each document are then ranked and the re-
sulting result lists are evaluated. Results are presented in Section 6.

We explore features that take into account positions, co-occur-
rences, and probabilistic properties of phrases on the level of the
collection, journal, document, section, and even individual XML
element. Below, we detail the intuitions behind each group of fea-
tures. Each section below stands for a group of features; a feature
can combine several concepts, for example when we model struc-
ture in a probabilistic way. Notation and formal definitions can be
found in Table 3. We do not include lexical features such as PoS-
pattern, suffix pattern, or presence of adjectives, because, based on
the results obtained by Hulth [13], we assume that these are cap-
tured by the way we extract candidate keyphrases (cf. Section 4).

5.1 Position and Length
Position of first occurrence (POS1) and length in words have

been found to be useful indicators for keyphrase extraction early on,
and are used in most current keyphrase extraction methods. In ad-
dition, the spread between first and last occurrence of phrases have
been found beneficial in the related task of link generation [18]. For
comparison with prior work we implement POS and SPR on the
document’s full text and abstract.

5.2 Centrality
Shah et al. [23] describe a scoring method for keyphrase extrac-

tion based on the assumption that words central to the main topic
of an article have strong associations with many other words. As-
sociations between words are computed based on how often words
co-occur in the same sentence. For comparison we re-implement
this centrality score for document abstracts and sections (CPa, s,
cf. Table 3). We apply a slight modification as we are interested
in scoring phrases instead of individual words. We generate co-
occurrence statistics for all nouns contained in a phrase, and then
use as features the minimum, maximum, and average scores.

5.3 Probabilistic Features
A feature that has been found to perform well for keyphrase ex-

traction is TFIDF , the product of normalized term frequency and
inverse document frequency. By explicating the relation between
keyphrase extraction and information retrieval (IR), we can justify
this finding analytically and derive a new set of probabilistic fea-
tures based on retrieval models. In IR, the task is to retrieve doc-
uments that are relevant to a query. Given a query, retrieval algo-
rithms typically return a ranked list of documents, where the doc-
uments that are considered most likely to be relevant to the query
are ranked at the top. Probabilistic generative retrieval models ex-
press this likelihood of being relevant as the probability that a doc-
ument “generates” a given query, i.e., the probability that a random
sample drawn from the document model produces the query. This

probability can be expressed as P (D|t). As it is difficult to reliably
estimate this probability directly, this term is typically re-written as

P (D|t) =
P (t|D)P (D)

P (t)
(1)

using Bayes’ Theorem. For ranking documents for a given query,
the normalizing term P (t) can be dropped, as it is independent of
the query, resulting in P (D|t) ∝ P (t|D)P (D). This function can
be estimated in different ways, under different assumptions, and a
close relation to TFIDF ranking has been identified [12, 22].

In keyphrase extraction, we have a given document and the task
is to rank phrases by their representativeness for this document, i.e.,
the term we are interested in is P (t|D), the probability of drawing
a phrase from a given document, which we estimate using the max-
imum likelihood estimate (MLE ).

Apart from only considering document features, we can integrate
information about the collection. The intuition that words or phra-
ses that occur in few documents in the collection are more informa-
tive than more frequent terms is expressed through the inverse doc-
ument frequency (IDF ). Church and Gale [3] find that informative
terms are not distributed equally over all documents. More infor-
mative terms are found in relatively fewer documents than could
be assumed given a term’s frequency in the document collection.
They model this finding as residual IDF (RIDF ), the difference
between the expected and actually observed IDF .

Expanding on these ideas, we consider the entropy H which
models the uncertainty associated with a possible outcome of a ran-
dom variable. Relative entropy (RelH (t, R1, R2)) is a measure of
the information gain when observing t. Observing a phrase that is
very likely to occur in R1, but rarely occurs in R2 results in a high
information gain, as to which corpus the phrase was drawn from.
Similarly to RelH , the KL-divergence, KLD(t, R1, R2) measures
the loss of information if we assume that a phrase was drawn from
model R1 while the true distribution is R2.

In a task related to keyphrase extraction—extracting back-of-the-
book indexes—using the χ2 test of independence as a scoring com-
ponent was found to achieve good results [5]. Therefore we include
this scoring method in our comparison, following the implementa-
tion of the authors. The test statistic measures the degree to which
the observed frequency of a phrase deviates from it’s expectation
given the collection. A higher value corresponds to a stronger as-
sociation between a phrase-document pair.

In our implementation of probabilistic features we consider phra-
ses as atomic values, i.e., we do not consider the individual words
that a phrase is composed of, and the count of terms in a document
is the count of candidate phrases generated.

5.4 Collection Structure
As discussed in Section 3, our collection is structured by jour-

nal, journal issue, and publication date. We make use of this struc-
ture in our experimental design (Section 4.4), but beyond this, the
collection structure may provide useful information for keyphrase
extraction. E.g., articles within the same journal may discuss simi-
lar topics, which we could identify by comparing term distributions
between the journal and the collection as a whole.

We focus on the level of journal as a natural grouping within the
collection. Although the journals represent two relatively closely
related research areas (Computer Science and Food Informatics),
there may be differences in document style and format, or in how
keyphrases are used. Conventions on the level of journal may, for
example, be influenced by the editors, or by the particular research
community primarily contributing to a journal.

We incorporate collection structure by considering the journal of
an article as the reference corpus J for the probabilistic features



Symbol Description
t Phrase
D Document
C Document collection
J Subset of documents in C that were published in journal J
R ∈ {D, J, C} Reference corpus

E
Element type, e.g., t = title, a = abstract, s = sections; other element types are
referred to by name. When no element is specified we mean full text.

Sn(D) Section n of document D
nE(t, R) Term count, i.e., the number of times t occurs in element E in R

df E(t, R)
Document frequency, i.e., the number of documents in R where t occurs in ele-
ment E

sE(t1, ..., tn) Number of sentences in element E in which phrases t1, . . . , tn co-occur

Feature Description

LEN = |t| Length of phrase t in words [11]

POSn (t, D) =
posn(t)

|D|
Position of the nth occurrence of t in D, normalized by the length of D, not to be
confused with PoS (part-of-speech) [11]

SPR(t, D) = d(POSmax(t), POS1(t)) Spread, i.e., distance between the last and first occurrences of t in D [29]

CPE(t) =
X
t′

|sE(t, t′)|
|sE(t)|

Phrase centrality of phrase t, based on word centrality as defined in [23]

TFE(t, R) =
nE(t, R)

|R|
Term frequency of phrase t in all elements E in R, normalized by the length of
all elements E in R

IDFE(t, R) = log

„
R

df E(t, R)

«
Inverse document frequency of phrase t in elements of type E [11]

TFIDFE(t, R) = TFE(t, R)IDFE(t, R)
common statistical measure in IR, models the importance of phrase t for elements
of type E in document d [11]

RIDFE(t, R) = log

„
R

df E(t, R)

«
+ log

„
1 − e−

TFE(t,R)
R

«
Residual IDF, i.e., the difference between expected and observed IDF in elements
of type E

MLEE (t, R) = PE(t|R) =
nE(t, R)P
t′ nE(t′, R)

Maximum likelihood estimate, i.e., the relative importance of t in elements of type
E reference corpus R

RelMLEE (t, R1, R2) =
MLEE(t|R1)

MLEE(t|R2)
Relative MLEE between reference corpora R1 and R2

HE(t, R) = PE(t|R) log PE(t|R) Entropy of t with respect to R

RelHE (t, R1, R2) =
HE(t|R1)

HE(t|R2)
Relative entropy HE between reference corpora R1 and R2

KLDE(t, R1, R2) = PE(t|R1) log
PE(t|R1)

PE(t|R2)

Kullback-Leibler divergence, the relative entropy between R1 and R2 when we
assume R1[5, 24]

RelKLDE (t, R1, R2, R3) =
KLDE(t, R1, R2)

KLDE(t, R1, R3)
Relative KLDE between reference corpora R1 and R2

χ2
E(t, R)

χ2 test of independence between occurrence of a candidate phrase t in E and a
reference corpus R [5]

Table 3: Notation and features used in this paper; features labeled with a subscript stand for multiple features.

that measure deviation from a background corpus: MLE(t, D, J)
gives the ratio of the expected frequency of observing a phrase in
the document as opposed to the journal, identifying phrases that
are relatively more frequent in the document. RelH (t, D, J) cap-
tures the relative reduction in entropy, KLD(t, D, J) quantifies the
loss when we assume model D as opposed to J as t is observed.
RelKLD(t, D, J, C) gives the ratio of this loss when considering
the journal as opposed to the whole collection as the background
corpus, and χ2(t, J) tests independence between a phrase and a
term with expectations obtained from the journal.

We compare probabilistic features implemented on the journal
level to those based on the whole collection. In addition, we eval-
uate these rankings on subsets of the corpus corresponding to five
journals that are most frequently represented in the collection.

5.5 Document Structure
Many document types, or genres, exhibit a characteristic style

and form. E.g., news articles typically have a headline summariz-
ing the article, an indication of the news source, location and date,
etc. Both authors and readers are aware of these conventions and
use them to effectively process the document content. Similarly,
scientific papers are subject to constraints in form and style, that

have developed over time, and are, for example, enforced through
the review process, which results in a certain degree of standardiza-
tion [4]. Experienced readers of scientific articles have been found
to form a mental model of the typical structure of a research article
and to use this model for selective reading [6].

In contrast to corpora previously used for keyphrase extraction,
our corpus preserves the clean document structure available at the
publishing stage of scientific articles. We use this structure in two
ways. First, we model the content of markup elements to identify
whether some of these elements are useful for keyphrase extraction,
and which elements are the most informative. Second, we focus on
section structure and augment the markup with position and clues
in the section headers to identify main section types.

5.5.1 XML markup
We assume that the types of markup elements in our document

collection have semantics that are similar across documents. Over-
all, some types of elements may be more likely to contain content
representative of the document content than others. E.g., a reader
may be more likely to find information about the document topic
in the title than in the author’s contact information. In this case the
XML markup may serve different purposes. It can explicate struc-



ture corresponding to the conventions mentioned above (marking
the document title, abstract, sections and section headings, lists,
figure captions, etc.). But the specific markup format has been de-
veloped by a publishing house for use during the electronic pub-
lishing process and may not necessarily be relevant for readers. The
markup ranges from coarse (e.g., section) to very fine granularity
(e.g., individual symbols within a mathematical formula, individual
cells of a table). Thus, some markup may be helpful for identifying
important phrases in the document, while others are not.

We model XML markup probabilistically, using the probabilistic
features described above. We include every XML element type that
was found to contain at least one keyphrase at least once in our
development set. We compare these features to identify element
types that are most likely to contain keyphrases, to determine how
we can best capture this information.

5.5.2 Sections
A particularly important structural element of scientific articles

are sections and a lot of research is concerned with modeling the
discourse structure created through the use of section types [15].
Given the different functions of section types (introduction, results
presentation, etc.), the content of some sections may be more rep-
resentative of a document’s topic than others. This hypothesis is
supported by Shah et al. [23] who analyzed occurrences of MeSH6

terms by section type in 104 articles of a biomedical journal. The
authors found a relatively higher concentration of MeSH terms in
abstracts and methods sections, and also found qualitative differ-
ences between the different sections.

To identify generic section types we make use of two types of
cues: (i) position and (ii) characteristic words in section titles [15].
First, we identify top-level sections based on section numbering.
Position is then inferred from the ordering of the top-level sections
in the document, and we include features for the first N and last N
sections (in our case we set N to 10, a number chosen to exceed our
estimate of generic section types identifiable based on position).

Type cue words count

Introduction introduction 954
Background background, related work 114
Method method 373
Result result 415
Discussion discussion 410
Conclusion conclusion, concluding, summary 651

Table 4: Generic section types, cue words, and frequency of oc-
currence on the development set. For 98% of the documents at
least one generic section type can be identified using cue words.

Characteristic words in section headings were obtained from the
most frequent section titles of documents in the development set.
Frequent section headings were grouped by functions; cue words
were manually extracted. All top-level sections containing a cue
word were assigned to the corresponding type; Table 4 summarizes
the results. For each generic section type we generate probabilistic
scores as described before and draw comparisons between section
types and with features based on the full document text.

6. RESULTS AND DISCUSSION
In this section we present results to address our research ques-

tions. First we evaluate how features that have been found to per-
form well in previous work perform on our new collection. We
6Medical Subject Headings—a controlled vocabulary of indexing
terms.

feature coverage P@10 recall MRR MAP

LENM 100% 0.0574 0.1766 0.1688 0.0033
POS1,abstract

M 100% 0.0265 0.0906 0.0967 0.0011
POS1,abstract

O 100% 0.0099 0.2300 0.0442 0.0008
POS1,fulltext

M 100% 0.0821 0.3975 0.2237 0.0043
POSn,abstract

O 100% 0.0306 0.3186 0.1164 0.0021
POSn,fulltext

O 100% 0.0215 0.2166 0.0826 0.0013
SPRabstract

O 100% 0.0719 0.4069 0.2232 0.0045
SPRfulltext

O 100% 0.0738 0.3593 0.2197 0.0041

Table 5: Performance of several individual features in abstract
and full text which performed well in earlier work.

consider position and phrase length (6.1), centrality (6.2), and prob-
abilistic models, including our novel ones (6.3). Because previous
work has performed evaluation either on full text documents or on
abstracts only, we include both for comparison. Next, we turn to the
features related to document structure, namely in the XML markup
(6.4), and section structure (6.5). Concerning collection structure,
we report on performance of models that use the journal as back-
ground corpus, and we also compare the best-performing features
when evaluated on articles of individual journals (6.6). Finally,
we report on a small number of feature combinations, and com-
pare them with previous approaches to demonstrate that our pro-
posed features indeed improve keyphrase extraction performance
(6.7) over other established methods.

Because we explore a very large number of features it is imprac-
tical to report results for all. Thus, we only report on and compare
results for selected features, in particular those that perform well or
those that are interesting otherwise. The full list of results will be
made available online as a supplement to this paper7.

We analyze the performance of individual features on the train-
ing data set as described in Section 4. Selected feature combina-
tions are trained on the training set and performance is reported on
the test set. In all result tables we mark best scores per column in
bold face. Triangles next to rankings of individual feature indicate
whether the ranking was ascending (M, i.e. lower scores correspond
to better keyphrases) or descending (O, higher scores indicate better
keyphrases). Recall that we evaluate 100 keyphrases each time, so
a different sorting yields different results.

6.1 Position and Length
Four simple features that have been found to perform well in

previous work are POS1, LEN , SPR, and POSn. In Table 5 we
show the most interesting results of these individual features using
the abstract and full-text representation of the documents. From
this table we observe that there are distinct performance differences
between full-text and abstract. On early precision, POS1,fulltext

performs best, while the same measure calculated on the abstract
performs much worse. In fact, while all other measures show a
clear tendency as to whether higher or lower scores are associated
with good keyphrase candidates, POS1,abstract shows higher pre-
cision values when phrases are ranked in ascending order, while in
the reverse order recall is higher. This result corresponds to impor-
tant concepts being introduced either at the beginning, or at the end
of the abstract. SPR, a feature adapted from the related task of link
generation, is found to perform well, with SPRabstract achieving
highest recall and MAP scores in this group of features and similar
scores on the full text document. LEN is not expected to achieve
meaningful results, and stays well below the remaining features.
However, it may be useful in combination with other features to
steer preferences for longer or shorter keyphrases.

7Url removed to preserve anonymity.



feature coverage P@10 recall MRR MAP

CPabstract,max
O 100% 0.0245 0.1263 0.0920 0.0013

CPabstract,avg
O 100% 0.0214 0.1061 0.0832 0.0012

CPabstract,min
O 100% 0.0214 0.1065 0.0833 0.0012

Table 6: Performance of rankings by centrality score on docu-
ment abstracts. Results for full text documents stayed far below
those for abstracts.

Overall, we find relatively low precision of up to 8%, which
translates to less than one correct keyphrase returned in the top-
10. Recall in the top-100 list of these features is reasonably high
with about 41% of the ground truth keyphrases returned on aver-
age. MAP is low, suggesting that the correct instances are spread
out within the result list instead of being concentrated towards the
top of the list.

6.2 Centrality
An approach to keyphrase extraction based on the concept of

centrality has been used in the past [23], but was not compared
to other methods. When evaluated on the current collection, it
achieves very low scores when used individually for ranking can-
didate phrases (Table 6). From this table we also note that its per-
formance stays well below the ones we saw in the previous section.
The reason for this may be attributed to the fact that the current im-
plementation only takes nouns into account. Indeed, upon manual
inspection of the generated keyphrases, we find that the identified
nouns appear to be very central to the topic of the document. The
low performance results from the fact that all phrases sharing the
same nouns get the same score and are returned in “random” order.
This indicates that the centrality score does capture some useful
information but should be combined with other features.

6.3 Probabilistic Features
TFIDF is the most commonly used feature for keyphrase ex-

traction, and our results confirm that this is a good choice (Ta-
ble 7). Out of all probabilistic models it achieves highest scores,
with TFIDFfulltext performing slightly higher on most measures;
KLD performs similarly well. Of the features we have considered
so far, the probabilistic ones achieve the highest precision, with
only recall being exceeded by the positional feature SPRabstract.

We further observe that performance is low on RelH . Interest-
ingly, RIDF performs substantially better than IDF . Between
abstract and full text there is no clear winner. The abstract works
better for MLE, IDF , and RelH , but these features perform low
in general. On the best-performing probabilistic models TFIDF
and KLD, their performance is very similar. It appears that the
features with large difference, i.e. IDF , RIDF , etc. are more sus-
ceptible to large differences in language use. KLD and TFIDF
tend to be more robust to varied language use, but that also means
that they are less able to pick up finer variations when necessary.

6.4 XML Markup
For XML markup features we report TFIDF on the features

with the highest scores and high coverage (Table 8). Coverage is
relatively low for these features, as many XML markup codes are
only used in some articles. As expected, the best-performing el-
ements are, the TFIDF scores for abstract, sections, and title.
However, there are many other elements that achieve high perfor-
mance, such as the bibliography (ce : bibliography − sec), cap-
tions (ce : caption), and table headings (thead). Elements starting
with “sb :” are sub-elements of the bibliography. As such, a high
TFIDF of a phrase in cited article title, books, etc. is a good

feature cov. P@10 recall MRR MAP

IDFabstract
O 100% 0.0316 0.1233 0.1596 0.0021

IDFfulltext
O 100% 0.0161 0.0547 0.0681 0.0008

TFIDFabstract
O 100% 0.0957 0.3578 0.3515 0.0067

TFIDFfulltext
O 100% 0.1001 0.4051 0.3366 0.0074

RIDFabstract
O 100% 0.0399 0.2036 0.1179 0.0026

RIDFfulltext
O 100% 0.0629 0.2757 0.2161 0.0048

MLEabstract(t, D)O 100% 0.0781 0.3703 0.2249 0.0051
MLEfulltext(t, D)O 100% 0.0590 0.3331 0.1620 0.0036
RelHabstract(t, D, C)O 100% 0.0166 0.3189 0.1000 0.0018
RelHfulltext(t, D, C)O 100% 0.0018 0.0065 0.0088 0.0001
KLDabstract(t, D, C)O 100% 0.0941 0.3541 0.3289 0.0063
KLDfulltext(t, D, C)O 100% 0.0948 0.4010 0.3109 0.0069
χ2

abstract(t, D, C)O 100% 0.0601 0.3393 0.2629 0.0042
χ2

fulltext(t, D, C)O 100% 0.0704 0.2384 0.2827 0.0047

Table 7: Performance of features based on probabilistic mod-
els for abstracts and full text. TFIDF performs best overall,
KLD achieves similar scores.

feature coverage P@10 recall MRR MAP

TFIDFce:abstract−sec
M 100% 0.0957 0.3578 0.3515 0.0067

TFIDFce:bibliography−sec
M 100% 0.0761 0.3319 0.2890 0.0055

TFIDFce:caption
M 91% 0.0603 0.1777 0.2321 0.0094

TFIDFce:sections
M 100% 0.0955 0.3768 0.3272 0.0071

TFIDFce:simple−para
M 100% 0.0935 0.3582 0.3317 0.0067

TFIDFce:title
M 100% 0.0762 0.2411 0.2078 0.0267

TFIDFce:table
M 70% 0.0512 0.1575 0.1728 0.0056

TFIDFthead
M 50% 0.0320 0.0618 0.1246 0.0149

TFIDFsb:book
M 56% 0.0147 0.0517 0.0839 0.0104

TFIDFsb:edited−book
M 56% 0.0197 0.0619 0.1244 0.0150

TFIDFsb:maintitle
M 98% 0.0839 0.2984 0.3084 0.0093

TFIDFsb:title
M 98% 0.0845 0.3002 0.3076 0.0091

Table 8: Performance of TFIDF of XML markup features.
Best performance is achieved with abstract, title, and sections.

indicator for keyphrases.

6.5 Section Structure
Generic section types show an interesting pattern (Table 9). “In-

troduction” seems to be the most general type and is found in al-
most 80% of the test documents and keyphrase extraction perfor-
mance is also good. Background has very low coverage and low
performance. ‘Method”, “result” and “conclusion” sections show
medium coverage, and good performance. By far the best is the
“discussion” section, which even performs better than when gener-
ating scores on the full-text. These results indicate that, when we
can identify section types, such information can be very useful for
keyphrase extraction.

For sections of type “discussion” we include additional proba-
bilistic features. Here we find a similar performance, for example
in IDF and MLE to the ones we observed for abstracts (cf. Sec-
tion 6.3). This suggests that performance of these features is indeed
related to the topical coherence of the text samples.

As expected, the sections based on position have higher cover-
age than section types identified based on section. Beyond section
3 coverage drops, as there are fewer documents with more than
three sections. Performance of the features based on the first and
last sections is good. We assume that these sections correspond to
“introduction” and “discussion” / “conclusion” (given the scores,
discussion is more likely).

In comparison with [23] we see similarities and differences which
may be attributed to the field of the documents in question. They
found the largest number of keywords on average in the methods
and introduction sections, and the highest concentration (keyword
over section length) in the abstract and introduction. We also get



feature coverage P@10 recall MRR MAP

TFIDF1
O 83% 0.0941 0.3098 0.3590 0.0062

TFIDF2
O 83% 0.0701 0.2310 0.2645 0.0048

TFIDF3
O 83% 0.0696 0.2217 0.2650 0.0051

TFIDFn
O 83% 0.0968 0.3123 0.3445 0.0066

TFIDFn−1
O 83% 0.0740 0.2508 0.2700 0.0052

TFIDFn−2
O 83% 0.0689 0.2391 0.2517 0.0047

TFIDFINTR
O 79% 0.0956 0.3118 0.3619 0.0063

TFIDFBACK
O 9% 0.0612 0.2652 0.2357 0.0034

TFIDFMETHOD
O 33% 0.0960 0.2304 0.3310 0.0072

TFIDFRESULT
O 36% 0.0944 0.2282 0.3481 0.0077

TFIDFDISC
O 40% 0.1205 0.3112 0.4212 0.0092

TFIDFCONCL
O 47% 0.0728 0.2933 0.2748 0.0042

TFDISC
O 40% 0.0827 0.3124 0.2378 0.0052

IDFDISC
O 40% 0.0391 0.0917 0.1689 0.0024

RIDFDISC
O 40% 0.0737 0.2499 0.2190 0.0056

MLEDISC
O 40% 0.0828 0.3125 0.2378 0.0052

KLDDISC
O 40% 0.1170 0.3096 0.3971 0.0086

χ2
DISC

O 40% 0.0822 0.1829 0.3414 0.0058

Table 9: Probabilistic features for generic section types. The
discussion section, as well as first and last sections perform best.

good performance on the introduction, but find the discussion sec-
tion to perform best overall.

6.6 Collection Structure

feature cov. P@10 recall MRR MAP

IDFabstract(t, J)O 100% 0.0391 0.1561 0.1881 0.0025
IDFfulltext(t, J)O 100% 0.0206 0.0779 0.0793 0.0010
RIDFabstract(t, J)O 100% 0.0440 0.2330 0.1290 0.0029
RIDFfulltext(t, J)O 100% 0.0668 0.3060 0.2259 0.0053
TFIDFabstract(t, J)O 100% 0.0943 0.3564 0.3357 0.0060
TFIDFfulltext(t, J)O 100% 0.0957 0.3885 0.3117 0.0070
MLEabstract(t, J)O 100% 0.0040 0.0671 0.0190 0.0002
MLEfulltext(t, J)O 100% 0.0027 0.0407 0.0111 0.0001
RelMLEabstract(t, D, J)O 100% 0.0469 0.3176 0.2136 0.0032
RelMLEfulltext(t, D, J)O 100% 0.0293 0.0870 0.1320 0.0018
RelMLEabstract(t, J, C)O 100% 0.0367 0.2546 0.1343 0.0024
RelMLEfulltext(t, J, C)O 100% 0.0307 0.1371 0.1071 0.0018
KLDabstract(t, D, J)O 100% 0.0914 0.3538 0.3128 0.0057
KLDfulltext(t, D, J)O 100% 0.0927 0.3895 0.2978 0.0066
RelKLDabstract(t, D, J, C)O 100% 0.0045 0.2492 0.0281 0.0008
RelKLDfulltext(t, D, J, C)O 100% 0.0002 0.0063 0.0016 0.0000
χ2

abstract(t, J)O 100% 0.0693 0.3269 0.2775 0.0045
χ2

fulltext(t, J)O 100% 0.0781 0.2791 0.2921 0.0052

Table 10: Probabilistic features based on journal. Like on the
collection as a whole TFIDF and KLD perform best.

To utilize collection structure we have evaluated the probabilistic
models at the journal level. Some features use the journal as back-
ground corpus, whilst others exploit the difference between jour-
nal and collection. Results are summarized in Table 10. We find
that many features perform better using the journal than when us-
ing the whole collection, in particular IDF , RIDF , MLE and
RelMLE, and χ2. This suggests that for these features to work
well, the document collection as a whole may be too general or
too noisy. The best-performing individual features are KLD and
TFIDF , as with the overall collection.

To further investigate the relation between documents, journals,
and the collection as a whole, we also evaluated on the 5 journals
for which the most articles are available in our collection; the re-
sults of which are shown in Table 11. We report the 5 best perform-
ing features per journal, determined by performance on P@10.

We see that there are large performance differences between in-
dividual journals. On the most frequent journal the highest P@10

feature coverage P@10 recall MRR MAP

Food and Chemical Toxicology (1199 articles in 92 issues)

TFIDFfulltext(t, J)O 100% 0.1874 0.3411 0.5788 0.0170
TFIDFabstract(t, D)O 100% 0.1869 0.3566 0.5850 0.0172
KLDfulltext(t, D, J)O 100% 0.1799 0.3416 0.5695 0.0161
KLDfulltext(t, D, C)O 100% 0.1755 0.3499 0.5723 0.0160
RIDFfulltext(t, J)O 100% 0.1584 0.3210 0.4744 0.0156

Computer Networks (982 articles in 115 issues)

TFIDFabstract
O 100% 0.0740 0.3715 0.2830 0.0043

KLDabstract(t, D, C)O 100% 0.0718 0.3676 0.2749 0.0042
TFIDFabstract(t, J)O 100% 0.0701 0.3585 0.2744 0.0041
POS1,fulltext

M 100% 0.0692 0.3925 0.1935 0.0031
TFIDFfulltext(t, D)O 100% 0.0668 0.3833 0.2248 0.0041

International Journal of Medical Informatics (704 articles in 66 issues)

TFIDFfulltext(t, D) 100% 0.0740 0.4061 0.2747 0.0046
KLDfulltext(t, D, C)O 100% 0.0710 0.4031 0.2409 0.0042
KLDfulltext(t, D, J)O 100% 0.0678 0.3821 0.2344 0.0039
POS1,fulltext

M 100% 0.0649 0.3744 0.1930 0.0032
TFIDFfulltext(t, J) 100% 0.0646 0.3716 0.2348 0.0038

Information Sciences (669 articles in 90 issues)

TFIDFabstract(t, J)O 100% 0.0757 0.4212 0.2580 0.0042
TFIDFabstract(t, D)O 100% 0.0750 0.4222 0.2776 0.0044
KLDabstract(t, D, J)O 100% 0.0726 0.4189 0.2347 0.0039
KLDabstract(t, D, C)O 100% 0.0712 0.4206 0.2482 0.0040
χ2

abstract(t, J) 100% 0.0674 0.3952 0.2726 0.0041

Cognition (535 articles in 101 issues)

POS1,fulltext
M 100% 0.1067 0.5435 0.3091 0.0055

KLDabstract(t, D, C)O 100% 0.0835 0.4530 0.2811 0.0044
TFIDFabstract(t, D)O 100% 0.0829 0.4568 0.2968 0.0046
KLDabstract(t, D, J)O 100% 0.0811 0.4458 0.2646 0.0041
TFIDFabstract(t, J)O 100% 0.0805 0.4490 0.2837 0.0043

Table 11: Performance of the top-5 features (selected by P@10)
of the 5 journals with the most articles.

value of 0.1874 is almost twice that of that achieved on the overall
collection. For the same journal, MRR goes up to 0.5788, corre-
sponding to the first correct result being found at rank 2 on average.
The highest recall values range from 34% up to 54%. For all jour-
nals variants, KLD and TFIDF are among the best-performing
features, but for some journals the collection-based versions per-
form better. Other high-performing features are POS1,fulltext,
and in one case each RIDFfulltext(t, J) and χ2abstract(t, J).
We think that the TFIDF and KLD are generally robust, but that
other features may be useful for tuning in to the language use of a
particular journal.

6.7 Combining Features
In our analysis we have identified features for which we expect

to improve keyphrase extraction performance when used in combi-
nation with other features. We perform a small number of experi-
ments to follow up on these intuitions. A more systematic explo-
ration of feature combinations is beyond the scope of this paper.

For comparison we run the Kea system—which is typically used
as baseline system —and compare results with the most recent ver-
sion [11]. This system uses three features: LEN , POS1, and
TFIDF , all extracted from full text documents. It uses a machine
learning algorithm called Regression-by-Discretization which wraps
around a Naive Bayes classifier. As Kea cannot handle XML files
we converted the documents’ title, abstract, and sections to plain
text. The settings were adjusted to not use a controlled vocabulary,
and no lower threshold for phrase occurrence was used. We also
re-implemented the approach taken by Kea to reflect our candidate
phrases and features, which is marked Comb1 below. Performance
of both is shown in Table 12.



feature coverage P@10 recall MRR MAP

KEA system 100% 0.1058 0.4695 0.3588 0.0069
Comb1 100% 0.1144 0.4929 0.3643 0.0074
Comb1 + SPRabstract 100% 0.0918 0.4306 0.3343 0.0060
Comb1 + CPabstract 100% 0.1232 0.4999 0.4033 0.0081
Comb1 + probabilities 100% 0.1041 0.4352 0.3652 0.0067
Comb1 + sections 100% 0.1098 0.4883 0.3589 0.0071
Comb1 + xml 100% 0.1069 0.5071 0.3346 0.0068
Comb1 + journal 100% 0.1046 0.4613 0.3487 0.0067

Table 12: Performance of initial feature combinations.

We observe that our re-implementation performs better than Kea,
which can be attributed to the candidate selection strategy. Indeed,
we find that Kea produces more negative instances, which makes
the learning task more difficult. Spread does not add to the per-
formance of the baseline feature set. The reason may be that it
is highly correlated with POS1, which is already included in the
features set. It is known that the Naive Bayes classifier does not
perform well on feature combinations with high correlations, as it
is based on the assumption of feature independence.

A substantial improvement is achieved using the centrality score
CP . We had hypothesized that its low individual performance is
due to the fact that it does not distinguish between different phra-
ses containing the same central nouns. From the combinations we
see that this is indeed the case, and that it can work well in com-
binations with other features. The combination with XML features
results in the highest recall. This suggests that including features
based on different elements can boost correct keyphrases up on the
result list. The combinations with section and journal features do
not improve over the baseline combination. Overall, these combi-
nations indicate that keyphrase extraction can be improved by using
a diverse set of features.

7. CONCLUSION AND FUTURE WORK
In this paper we have systematically compared features for key-

phrase extraction on a large corpus of scientific journal articles with
rich semantic annotations. We have proposed the use of structural
features that utilize the rich markup of the documents and have
compared them to a standard baseline and a large number of fea-
tures that have been suggested in prior work.

Our main finding is that differentiation, both between different
elements of the document and parts of the collection, can contribute
useful information for keyphrase extraction. On the level of docu-
ment structure we find that probabilistic models for generic section
types perform well, in particular the discussion section appears to
be informative for this task. On the level of collection structure we
find large differences in performance on different journals, and for
different journals different features show best performance.

We explore a small number of feature combinations using a Naive
Bayes classifier to demonstrate that combinations of different groups
of features can outperform a standard baseline. An interesting di-
rection for future work is to develop further combinations using
more advanced learning or optimization approaches that specifi-
cally address the characteristics of this task.
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