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Abstract—In this paper, we study the problem of domain-
specific related entity finding on highly-heterogeneous knowledge
graphs where the task is to find related entities with respect
to a query entity. As we are operating in the context of
knowledge graphs, our solutions will need to be able to deal with
heterogeneous data with multiple objects and a high number of
relationship types, and be able to leverage direct and indirect
connections between entities. We propose two novel graph-
based related entity finding methods: one based on learning
to rank and the other based on subgraph propagation in a
Bayesian framework. We perform contrastive experiments with
a publicly available knowledge graph and show that both our
proposed models manage to outperform a strong baseline based
on supervised random walks. We also investigate the results of
our proposed methods and find that they improve different types
of query entities.

I. INTRODUCTION

Information about entities and their connections—often
encoded in knowledge graphs—is appearing ubiquitously in
the context of modern search engines [1, 2]. In a web setting,
knowledge graphs are particularly useful for query understand-
ing, presenting entity summaries, and providing explanations
for search results [3, 4, 5]. Another popular application of
knowledge graphs is to power entity recommendations as well
as ranking entities related to a query entity. Existing work in
this area mostly focuses on the web search domain, in which
the main features of the related entity finding algorithm are
typically based on behavioral signals extracted from users’
search sessions [6, 7, 8].

Consider a knowledge graph to be a graph KG = (E,L)
where E is the set of nodes, i.e., entities, and L the set of
directed edges, i.e., relations, where each l ∈ L is of a certain
relationship type. In this paper we consider the task of domain-
specific related entity finding from the graph KG, i.e., ranking
a set of entities E given a query entity eq within a specific
domain. An increasingly prominent requirement for any kind
of recommendation is explainability of the obtained items [5].
In our setting we realize this by explicitly including the paths
between eq and each ranked entity. The task therefore requires
that each entity e in the candidate entity set Eeq ⊆ KG is
connected to eq in KG through at least one path Peq,e and,
furthermore, the entities in Eeq should be ranked based on the
relevance of e with respect to the query entity eq .

Entities can be related in different ways; KGs provide
the context on how entities are connected. Examples include

public domain KGs such as DBpedia or Freebase in the context
of web search [7] or movie and book recommendations [9, 10].
Another example is governmental impact. Suppose we have a
KG containing companies, people, and other entities as well
as several relationship types connecting them. Now consider
Walmart as the query entity. Assuming that there are paths
between Walmart and a number of other company and people
entities in the knowledge graph, which one does Walmart
influence the most? Within this context of governmental
impact, good related entities for Walmart would be entities
for which their governmental or political power are affected
by Walmart. Let us consider political power as a latent value
ze attached to an entity e which might fluctuate because of
a query entity (e.g., due to campaign donations). Suppose
that related entities are connected through simple paths, i.e.,
paths with no repeated nodes and no loops that connect the
entities in less than k hops, then Walmart and the entities
in this subgraph (e.g., Politician-A, Politician-B, Lobbyist-C)
can be connected by a multitude of paths comprising different
relationship types. Now suppose that Politician-A received
donations from Walmart and Lobbyist-C works with Walmart,
then both Politician-A and Lobbyist-C are strongly related to
Walmart and thus suitable related entities for this context. The
connections are strong because the political powers zA and
zC of Politician-A and Lobbyist-C will fluctuate heavily with
respect to Walmart. Meanwhile, Politician-B—who only has
an indirect connection due to a family member who works
there—is not a good recommendation of related entity. The
political power zB of Politician-B is less likely to be affected
by Walmart; i.e., zB depends less on Walmart. Although the
task may seem simple for small subgraphs, solving this task
in larger, more heterogeneous graphs is not trivial.

Working in the setting introduced above, we run into
several challenges. For one, knowledge graphs are inherently
heterogeneous, i.e., they contain multiple types of entities
and multiple types of relationships between entities. Learning
which relationship types are important is already challenging.
Moreover, when multiple links are combined into a path, the
number of possible link combinations will grow exponentially.
Finally, we need a way to aggregate the contributions in the
case of multiple paths from a query entity to the ranked enti-
ties. Most of the work on heterogeneous graphs only considers
a limited number of relationship types, where the number



of possible paths can be enumerated and their importance
can be learned directly from data [11, 12, 9]. In this paper,
we are particularly interested in finding related entities for a
large number of heterogeneous path combinations, requiring a
different strategy.

We therefore propose two novel methods for the domain-
specific related entity finding task. Our first approach is based
on learning to rank, in which we extract features from the
subgraphs connecting the query entity eq and related entity e.
The intuition is that we can leverage signals such as the path
length between entities in combination with other features such
as the different relationship types in the subgraph for related
entity finding. Our second approach is inspired by Bayesian
networks, in which we model the related entity finding in
heterogeneous graph through propagation in a probabilistic
manner and learn to deal with different relationship types
accordingly. We make intermediate predictions from the query
entity to intermediate entities at every stage, i.e., making
predictions locally, and propagate this prediction to the related
entity. In the learning phase, we optimize the weights of each
relation type globally within this propagation sequence, taking
into account all possible paths in a subgraph. Our approach is
unique in the sense that it utilizes shared parameters of con-
ditional probability by relationship type across all subgraphs.

Our main contributions can be summarized as follows. First,
we propose two approaches for domain-specific related entity
findin in the highly-heterogeneous setting. Second, we perform
an in-depth analysis and compare our methods against a strong
baseline on a novel domain: governmental impact.

II. RELATED WORK

Related work comes in different flavors. We first discuss
work on related entity finding in a general setting, then delve
into graph-based variants, and finish with a discussion on se-
mantic relatedness. Kang et al. [6] propose a machine-learned
entity ranking model which leverages knowledge graphs and
user data as signals to facilitate semantic search using entities.
Continuing this line of work, Blanco et al. [7] extract signals
from a variety of data sources: user search sessions, Twitter,
and Flickr to train a learning to rank model that identifies
entities related to user queries. Bi et al. [8] pursue recommen-
dation methods that are tailored to entities related to individual
user interests. Our approaches are different to these as we
do not have access to any behavioral data and thus need to
fully exploit the signal provided by the semantics of the highly
diverse relationship types in our graph.

As to purely graph-based methods that also do not rely on
user interaction data, Bordino et al. [13] propose a method for
ranking unexpected, interesting entities by extracting entity
networks from two sources of user-generated content.Bordino
et al. [14] consider the problem of anticipating user search
needs based on their browsing activity. Lao and Cohen [11]
focus specifically on path ranking algorithms and introduce
the relational retrieval task. Instead of learning a weight
parameter for each edge type as in previous work, they use one
weight per edge sequence. A score is then derived based on
a linear combination of labeled edge sequences. Backstrom

TABLE I
GLOSSARY OF THE MAIN NOTATION USED IN THIS PAPER.

Symbol Gloss

KG a knowledge graph
e an entity, where eq is the query entity
luv a directed edge/link connecting entity u and v
S a subgraph of KG, where Seqe is a subgraph containing the

set of all simple paths connecting eq and target e

φSuv features extracted from paths Suv

φluv features extracted from directed edge luv

BSuv a belief graph derived from the subgraph built from Suv

E a random variable representing node e in B
Q a random variable representing node eq in B
I a random variable representing node i between eq and e in

the belief graph B
P (E|Q) the entity relatedness probability of node E given Q
ω a conditional probability function i.e., P (E|D) for directly

connected entity nodes E and D
Ω aggregated prediction function to estimate P (E|Q)

and Leskovec [12] introduce a supervised method for link
prediction based on random walks, biasing the random walk
procedure to prefer entities based on known preferences in
the training data. Since this method also learns a notion
of proximity and obtains excellent results, we include it as
baseline in our experiments below. Noia et al. [9] propose a
learning to rank method for a recommender system that learns
the importance of all possible paths in the graph. As our task
of related entity finding in a highly-heterogeneous setting is
different we can not directly compare to this method.

Finally, estimating entity relatedness is an important task
which supports many other downstream tasks. One of its
primary uses is to support entity linking: Hoffart et al. [15]
propose a model for computing semantic relatedness between
two entities based on a weighted set of multi-word key
phrases. Most studies that investigate closeness in hetero-
geneous information networks use simple structures such as
direct paths [11, 10]. Huang et al. [16] propose using a so-
called meta-structure, i.e., a directed acyclic graph of object
types with edge types connecting them, to measure proximity
between entities. Finally, Hulpus et al. [17] propose a general
semantic relatedness measure on knowledge bases. We focus
on learning the relatedness within a recommendation domain,
instead of a general notion of relatedness as the methods
mentioned above.

Our work is different from the papers discussed above in the
following major ways: (1) we focus on related entity finding
in a graph setting, (2) we operate in a highly-heterogeneous
setting, and (3) instead of learning each path’s importance, we
base our predictions on subgraph features with a learning to
rank and subgraph propagation framework.

III. PROBLEM FORMULATION

Recall that our primary goal in this paper is to develop a
method for domain-specific related entity finding on knowl-
edge graphs. We formally define the task as follows. Given a
source entity eq , rank a set of entities E ∈ KG with respect to



eq within a specific domain. We formulate a generic approach
to solve this task as estimating the domain-specific relevance
between pairs of entities, i.e., rel(eq, e), ordering them, and
aggregating the results.

In order to reduce the search space of all possible entities we
first obtain a candidate entity subgraph S. We obtain S from
KG following a traversal procedure: given eq , we retrieve all
entities directly related to it using incoming and outgoing links
and then perform depth-first traversal to retrieve the next set
of candidate entities up to k hops. The query entity, related
entities, and all the relations between them form our subgraph
Seq . Pairs of entities are obtained from the query entity and
all other entities directly and indirectly connected to it.

We employ two different approaches in this paper to esti-
mate relevance, one of which is to predict the relevance within
a learning to rank framework as detailed in Section IV-A.
Our second approach makes intermediate recommendation
predictions from the query entity to intermediate entities at
every stage and propagates this prediction to the related entity;
it learns to deal with different relationship types accordingly.
We estimate rel(eq, e) as P (e|eq), i.e., the probability of
recommending an entity e given query entity eq , through a
graph-based inference algorithm as detailed in Section IV-B.
Finally, as a baseline, we consider a relevance estimation
method based on graph proximity, which we adapt to support
heterogeneous graphs in Section V-C.

Relationships in a knowledge graph can have additional
properties. Consider the following relationship: IsCampaign-
Donor from a company to a person. For this relationship type
a property such as the donation amount is typically included in
a knowledge graph. Furthermore, such numeric properties can
be normalized into weights to indicate the possible strength
of the connections, which we refer to as magnitude. One way
to normalize a property value into weights for a particular
relationship type is to divide each quantity by the sum of
all quantities originating from the same entity for the same
relationship type. For the rest of this paper, we focus on
computing the magnitude with source-based normalization;
however, our approach is generic and can be extended to
incorporate source-based, target-based, or both normalizations.

IV. METHODS

In this section, we detail our proposed methods for domain-
specific related entity finding.

A. Learning to Rank

For our first method we employ learning to rank and
rank each candidate entity based on: rel(e, eq) = Ψ(φe,eq ),
where Ψ is a machine learned ranking model that makes
related entity predictions based on φ(Seq,e), i.e., the feature
representation extracted from subgraphs containing all simple
paths connecting related entity e to query entity eq . φ(S) is
further detailed in Table II. We consider length, magnitude,
and type features that are meant to capture different intuitions
for prediction such as the fact that direct and/or multiple-
path connections are important, but also the fact that cer-

TABLE II
FEATURES USED FOR RANKING, EXTRACTED FROM THE SUBGRAPH

CONTAINING ALL PATHS CONNECTING THE QUERY AND RELATED ENTITY.
N INDICATES NUMERIC VECTORS AND V INDICATES VECTOR FEATURES

WITH BOOLEAN VALUES.

Feature Description Type

NumPaths Number of paths in Seqe N
MaxPathLen Longest path length N
MinPathLen Shortest path length N
AvgPathLen Average path length N

MinPathMagnitudeProd Minimum magnitudeprod N
MaxPathMagnitudeProd Maximum magnitudeprod N
AvgPathMagnitudeProd Average magnitudeprod N
MinPathMagnitudeSum Minimum magnitudesum N
MaxPathMagnitudeSum Maximum magnitudesum N
AvgPathMagnitudeSum Average magnitudesum N

BagRelationTypes Types of relations in the paths V
BagEntityTypes Types of entities in the paths V

tain relationship-type connections are important. Furthermore,
these simple intuitions can be combined to form a complex
set of features, encoding the overall structure of the subgraph
whilst keeping the number of features linear with respect to
the relationship types.

Length features. This feature group is designed to capture
the general characteristics of all paths connecting the query
and target entity. In particular, we focus on the length of
the paths and summarize this subgraph by extracting the
number of paths connecting the two entities and the short-
est/longest/average path length.

Magnitude features. This feature group aims to capture the
strength of the relationship that exists between the two entities.
We apply the magnitudes with source-based normalization
method described in Section III for each relation property.
Then, for a path peqe ∈ Seqe connecting query entity eq and
entity e we compute the path magnitude by aggregating the
strength of connections between the two entities as follows:

magnitudeprod(q, e) =
∏

luv∈pqe

weight(luv), (1)

where weight(luv) indicates the magnitude of the edge con-
necting two entities; the magnitudes for the paths are computed
by multiplying the strength of edges in the paths. In another
variant, we also consider using sum instead of product as
a way another way of aggregating the link to compute the
path magnitude. Finally, we compute the maximum, minimum,
and average of the path magnitudes aggregated by sum and
products as our subgraph features.

Type features. This feature group is designed to capture the
types of entities and entity relationships that exist between
all paths connecting the two entities. For each of these, a
boolean feature is extracted to indicate whether the particular
entity/relation type is found within the paths connecting the
two entities, which is then used as a feature.



B. Subgraph Propagation

Our second approach performs related entity finding through
a propagation from one entity node to another, starting with
the query entity eq and ending with the candidate entity e. The
related entity probability of adjacent entity nodes are estimated
given the current entity and its outgoing relations. We do so
by creating a belief graph BPeqe

based on the knowledge
subgraph Seqe for each query-entity pair (eq, e) and then
performing a propagation on this belief network. We design a
simple but efficient algorithm by extending belief propagation
algorithms from related work [18]. First, we represent each
entity node e as a random variable E indicating the related
entity finding decision on entity e. The links in the graph
indicate a causal dependency relationship between entities.
However, given the fact (1) that the query and related entities
can be connected by multiple paths and (2) how we construct
the subgraph, S will have a tree-like structure. Moreover, the
knowledge graph links are directed, reflecting a relation triple
〈d, r, e〉 denoting source entity d, relationship r, and target
entity e. Projecting this onto the belief graph B, node D will
become the parent of node E.

For inference, we simply instantiate the query node Q on
the belief graph BPeqe

, assigning it as an observed variable.
We then propagate this state to the other nodes, obtaining the
probabilities of all other entities in the subgraph. Our extension
of the Bayesian network utilizes a parameterized conditional
probability model that estimates the transitive propagation
probability after representing the connection between two
adjacent entities lde as features φ(lde). In the following
subsections, we further detail our approach. We first provide
an overview of the inference and prediction procedure on the
belief graph and then we detail how we learn the parameters.

Inference. Let Ω(.) be the forward propagation function,
which applies the conditional probability ω sequentially from
the source to target node. The probability of P (E|Q) is
reduced to the joint probability P (Q,E, I) , where I denotes
all intermediate nodes between Q and E. Therefore, following
P (E|Q) = P (Q,E)

P (Q) , we can compute the conditional proba-
bility P (Q|E) as the joint probability P (Q,E, I1, .., In). We
further assume local propagation, i.e., a node must be affected
for it to be able to spread the influence to a neighboring (child)
node. With this assumption, any parent node D connected to
child node E must be affected, allowing us to avoid computing
all the combination of values of the intermediate nodes as the
joint probability of the subgraph. We can therefore compute
the conditional probability efficiently in a top-down manner,
propagating the joint probability from query node Q to entity
node E. In this forward propagation, the joint probabilities
can be computed recursively as detailed in Algorithm 1. Con-
ditional probabilities are computed for each link by applying
ω(φ(lde)), which effectively produces solely local predictions.
The probability is computed incrementally, giving us the joint
P (Q, I1, .., In, E) once we reach a target entity E.

Learning. One of the key ingredients to perform inference
in a Bayesian network are the conditional probabilities which

Algorithm 1 computeProb(B, q, e)
Input: Belief graph B, query q, candidate entity e
Output: Relatedness probability P

1: if IsRoot(E) then
2: return 1.0
3: else
4: Lin ← getIncomingLinks(E)
5: C ← {}; M ← {}
6: for edge ∈ Lin do
7: c← ω(φ(edge))
8: C ← C ∪ c
9: m← computeProb(B, q, edge.src)

10: M ←M ∪m
11: end for
12: P ← causalAggregation(C)× joint(M)
13: // compute the conditional and joint probabiities
14: return P
15: end if

serve as the parameters of the model. In a normal Bayesian
network, these parameters θ are typically learned from data.
One of the important benefits of working with knowledge
graphs is that these parameter values can be shared throughout
the whole network, i.e., we only need to learn a single
conditional probability model ω that encodes the different
conditional probabilities between entities d and e directly
connected by edge l in the KG. In the following section, we
discuss how we learn our parameters from our data.

The related entity probability between two adjacent entities
e and d connected by edge lde is indicated as P (E|D).Instead
of learning all values of the parameters P (E|D) for every
combination of E and D, we learn a conditional probability
model ω, parameterized by edge features, through a gradient-
descent optimization procedure. The conditional probability
model will be shared across different subgraphs generated
from our (eq, e) pair. Recall that, ω local predictions on
adjacent nodes are aggregated into Ω in Algorithm 1. The
function computeProb, denoted as Ω in Algorithm 2, applies
the forward inference procedure that we introduced in the
previous subsection. Each link between entity e from its parent
d is represented as feature vector φ(lde) and we use the one-
hot vector of the relationship type of l and the magnitude of
the relation w as the feature value in the vector φ. The weight
will default to 1.0 if the link does not contain any magnitude
information. The relatedness probability P (E|D) between two
adjacent entities is estimated as follows:

P (E|D) = ω(lde) =
1

1 + eθφ(lde)
, (2)

that is, the probability of entity e given parent entity d is
estimated through a sigmoid function using weights θ and the
binary feature vector φ extracted from the edge that connect
the two entities.

Our optimization procedure to learn the function ω is
detailed in Algorithm 2. During training, the prediction Ω(xm)



Algorithm 2 Learning conditional probability model with L-
BFGS.
Input: Training data points M
Output: Conditional probability model: ω;

1: θ ← initializeWeights
2: while notConverged(ω) do
3: L ← 0.0
4: for each m ∈M do
5: fm ← Ω(m) // make prediction for m
6: L ← loss(ym, fm) // compute logistic loss
7: end for
8: θ ← updateWeights(θ,L))
9: end while

10: return ω // encapsulates the learned θ

for each training instance m is made by propagating evidence
from the query to the entities connected to it as follows. We
first initialize a weight vector θ for the edge features. Next, we
make local predictions on direct relations based on the current
weights and compute the predictions for every adjacent pair
of entities. Then, we propagate the predictions to the child
nodes, and so on. In the event of multiple paths connecting
the source and the target entity, we introduce an aggregation
function that we detail below.

For updating the weights we use a loss function L and its
derivative using the L-BFGS algorithm [19]. This logistic loss
is the most suitable in this case as we aim to compute the
posterior probabilities for ranking, not simply binary entity
relatedness decisions:

L =

N∑
i

log(1 + e−yiΩ(xi)), (3)

where yi is the label for a training instance i converted
to probabilities (explained below), and Ω(xi) the respective
probabilistic prediction on training instance xi. The function
Ω(.) gives the prediction at training time using the current
parameter weights θ and features φ. By learning the weights of
the relationship through forward inferencing, each relationship
type is optimized within its occurrence in the context of other
relations in the subgraph between the query and candidate
entity.

Our subgraph propagation method expects probabilities
P (E|Q) as input during training. With relevance labels geqe
in our training data denoting the relevance between (eq, e),
we convert the labels to probabilities as follows: P (E|Q) =
geqe

r ,which divides label by the highest possible label r.
Causal aggregation. Since there can be multiple edges

linking to node E, E will have multiple parents. This means
that for each entity node with multiple parents, multiple
paths—one for each parent node—need to be aggregated and
taken into account, which is equivalent to modeling causal
aggregation [18]. There are different ways to address causal
aggregation. With our Bayesian network-like approach, it is
not feasible to learn the conditional probabilities with joint

causes because: (1) we have multiple belief graphs instead
of a single Bayesian network, and (2) it will require a
very large amount of data to estimate all the conditional
probabilities. To address this issue, we employ the noisy-
OR distribution, which allows us to compress our conditional
probability model [18]. Note that our learning framework is
generic and can be extended with other methods for causal
aggregation. The noisy-OR distribution has the property that
each possible cause (i.e., parent in the graph) can exercise its
influence independently. This fits our use-case as we want to
accumulate effects from multiple paths when estimating the
relatedness. We utilize the noisy-OR distribution to combine
evidence from multiple parents. This method is computed
as P (E|D1, D2, ..., Dn) = 1 −

∏
i

(
1− P (D|Di)

)
,where i

iterates over all parents of D in the belief graph.

V. EXPERIMENTAL SETUP

In this section we describe the experimental setup including
our data, baseline, evaluation metrics, and parameter settings.
We first detail the research questions that drive our experi-
ments.

RQ1 How do our proposed methods and the baseline perform
on related entity finding?

RQ2 How does the subgraph propagation method compare
against the learning to rank method?

RQ3 How do our methods perform across query entities?
RQ4 Can the subgraph propagation method learn the most

important relationship types?

A. Data

Our experimental dataset is based on the LittleSis knowl-
edge graph,1 which focuses on political data around people and
organizations and is commonly used to study governmental
impact. It contains various object types including people, orga-
nizations, and locations. The relationships are grouped into ten
main categories: position, student, member, relation, donation,
service, lobbying, professional and ownership. Currently, this
knowledge graph contains facts about 100,000 entities. We
preprocess it by leaving out rare relationship types which only
appear less than two times, ending up with 168 relationship
types comprising 900,000 relationship instances.

B. Relevance assessments

For our relevance assessments we generate the candidate
related entities using the following procedure. First, we ran-
domly sample a number of query entities from all the entities
in our dataset. Then, for each query entity, we perform
candidate generation with the traversal algorithm described in
Section III. We extract subgraphs from the knowledge graph
by traversing for a maximum of k hops from the query entity.
To limit the size of the query subgraph and the number of
candidates we constrain the graph traversal based on the degree
of each node. If a node has an in-degree above a threshold
(n = 30) we will not continue traversing the incoming links,
as we assume these to be very generic connections and thus

1http://www.littlesis.org



to provide very little signal. Finally, we sample a number of
candidate entities from the subgraph to be judged. To make
sure we have a representative number of entities in each
hop, we sample candidate entities separately for each distance
value, i.e., we compute the shortest distance from a candidate
entity to the query entity, and sample entities with shortest
distance in k ∈ 1, 2, 3. This ensures that we have a number of
direct and indirect candidates in our dataset.

We then present each sampled query and candidate pair to
assessors to judge the related entity finding quality based on
the notion of governmental impact. We utilize crowdsourcing
to collect our relevance judgments and use CrowdFlower as
our annotation platform.2 More specifically, we design a task
in which the assessors have to decide the query entity’s impact
on the candidate entity. We ask the assessors to judge the
impact using a 4-grade relevance level, and instruct them to
annotate as follows:
• Not relevant: the query entity eq will have no impact on

the target entity e.
• Somewhat relevant: the query entity eq might have an

impact on the target entity e, although it might be limited.
• Relevant: the query entity eq will have an impact to the

target entity e.
• Highly relevant: the query entity eq will have an obvious

and strong impact on target entity e.
We also judge 70 query-candidate entity pairs ourselves and
use those as test questions to control the quality of the
crowd annotations. CrowdFlower will automatically exclude
annotators whose agreements fall below a threshold (set to
0.7 following common CrowdFlower guidelines). In the end,
we obtain 1600 judgments of query-candidate entity pairs.

From the crowdsourced assessments of the LittleSis dataset
we collect evaluation data for 54 query entities. We perform
5-fold cross-validation experiments in which the models are
trained on 4 folds of data and tested on the remaining fold.
We average the results across folds and report.

C. Baseline
We compare the performance of our proposed methods—

Learning to Rank (LTR) and Subgraph Propagation (SP)—
against a baseline based on supervised random walks. For LTR
we adopt the Random Forest implementation from scikit-learn
[20] in our experiments. As we discussed in Section II, we
operate in a highly-heterogeneous KG setting and we require
domain-specific related entity finding. Thus, approaches based
on manually selecting paths, enumerating and learning path
weights, general semantic relatedness, and non-graph features
such as [11, 9, 7] are ill-suited as baselines.

A baseline method based on random walks is more fitting
because the notion of power ze attached to each entity (as
illustrated above) can be considered as a type of proximity or
relevance score similar to PageRank. We detail this baseline
in the remainder of this section. Although random walk-based
methods are typically used to perform unsupervised recom-
mendations on graph data, we adopt a supervised random walk

2http://www.crowdflower.com

method based on [12] and extend their method to incorpo-
rate parameterized edge weights. That is, we learn different
transition probabilities for each edge type in the knowledge
graph. Intuitively, this allows for a better approximation of
relationship type weights.

Our modified version of the supervised random walk
method learns from pairwise preferences of entity recom-
mendation. From the original training data, we generate new
pairwise training instances (xi, xj) for every pair that satisfies
yi < yj , i.e., the relevance label of instance i is lower than
that of instance j with respect to the same source entity. In
each step of learning the edge weight parameters, we aim to
reduce the number of incorrectly ordered PageRank preference
pairs. More specifically, we aim to optimize the following loss
function after performing a PageRank computation:

minF (δ) = ||δ||2 + λ
∑

(zl,zd)∈Z

h(zl − zd), (4)

where δ is the parameter for edge weights, λ the regularization
parameter, Z is a list of known PageRank ordering such that
zl < zd, and h(.) is the loss function computed from the
pairwise PageRank differences. Following [12], we choose
the Wilcoxon-Mann-Whitney (WMW) loss with b set to 0.5:
h(x) = 1

1+exp(−x/b) ,which is differentiable and has been
proposed to maximize AUC in [21]. We use the learned edge
weights to compute PageRank scores in the heterogeneous
graph and use the scores to rank the entities for recommenda-
tion.

D. Metrics and significance testing

We evaluate the proposed approaches in a rank-based set-
ting. As our problem can be considered as a form of entity
ranking, we use metrics commonly used in document retrieval:
precision at m and nDCG@m where m ∈ {1, 3, 5, 10}. We
compute DCG using: DCG@k =

∑k
i=i

2reli−1
log2(i+1) ,and normal-

ize DCG with the ideal DCG to obtain nDCG. To determine
whether the difference in performance between methods is
statistically significant we apply the student’s paired t-test; we
use * to denote α < 0.1 and ** for α < 0.05.

VI. RESULTS AND DISCUSSION

In this section we present the results of our experiments
and answer the research questions. We first turn to answering
RQ1 and RQ2. Table III details the results of our experi-
ments. Overall, the learning to rank method obtains the best
performance both in terms of precision and NDCG. We further
observe that both our methods improve upon the supervised
random walk baseline in all metrics. We then look at the
performance of the learning to rank approach. LTR obtains a
10% improvement over the baseline in terms of P@3 and 5.6%
in P@10. In terms of NDCG@10, LTR achieves a significant
4.8% improvement. When we turn to the performance of the
subgraph propagation (SP) approach we find that it obtains a
7% improvement over the baseline in terms of P@10. In terms
of NDCG@10, SP achieves a significant 4% improvement over
the baseline.



TABLE III
RESULTS ON THE LITTLESIS KG.

Method P@1 P@3 P@5 P@10 NDCG@1 NDCG@3 NDCG@5 NDCG@10

Supervised Random Walks 0.717 0.731 0.724 0.711 0.699 0.787 0.808 0.835
Learning to Rank 0.836 0.816** 0.790 0.759* 0.798* 0.841** 0.858* 0.874**
Subgraph Propagation 0.750* 0.786 0.752 0.751* 0.736* 0.817 0.825* 0.854**

In summary, both our proposed methods show their potential
for domain-specific related entity finding, obtaining improve-
ments on the LittleSis data with governmental impact as the
domain. Overall, the learning to rank method obtains higher
improvements compared to the subgraph propagation method.

A. Performance across query entities

Here we answer RQ3, comparing the performance of the
different methods across query entities. First, we want to
determine whether LTR achieves the overall improvements by
consistently outperforming SP. We do so by comparing the
NDCG@10 and P@10 of LTR and SP across query entities
on the LittleSis dataset. Table IV shows a detailed result of this
contrastive analysis. In terms of NDCG, we observe that SP
performs better than LTR on 13 query entities, while LTR wins
on 28 query entities; on 13 occasions the performance ends
up in a tie. When it comes to precision, we observe that SP
performs better than LTR on 14 query entities, while LTR wins
on 18. There are 18 occasions where the performance ends up
in a tie. This result indicates that the two methods perform
differently on different sets of queries, as there are cases
where SP substantially outperforms LTR, and vice versa. This
observation inspires our next experiment and error analysis
below.

Our next experiment concerns different characteristics of
the query entities subgraph. The relevance assessments on the
LittleSis dataset show that each query entity does not always
have an equal distribution of relevant judgments, There are
some queries for which the subgraph contains substantially
more entities that are judged relevant than the ones that
are judged non-relevant. For this particular cases, imbalance
makes the actual ranking produced by the different methods
less important.

Inspired by the imbalance, we focus our attention on a query
segment we define as balanced queries: queries with at least
the same number of more non-relevant candidates than relevant
candidates, i.e., these queries’ subgraphs are not dominated by
relevant entities. The reason for zooming in on these cases
is that in a real-world scenario the rankings of candidate
entities on such queries tends to matter more than in the
case where almost every candidate in the subgraph is relevant.
Table V shows the performance of the different methods
on this particular segment. Interestingly, we observe that the
subgraph propagation method achieves the best performance in
this segment. The improvement in terms of P@10 is significant
and of a large magnitude (27%). This again confirms the
potential of the subgraph propagation method, since it is

TABLE IV
CONTRASTIVE RESULTS OF LTR VS. SP.

Result NDCG@10 P@10

LTR wins 28 18
Ties 13 22
SP wins 13 14

TABLE V
RESULTS USING ONLY BALANCED QUERIES.

Method NDCG@10 P@10

Supervised Random Walks 0.709 0.552
Learning to Rank 0.766 0.635
Subgraph Propagation 0.776 0.705**

successful in retrieving the relevant entities when the subgraph
also contains a considerable number of non-relevant entities.

B. Model Interpretability

In this section, we answer RQ4, focusing on the subgraph
propagation method. Recall that one main advantage of our
subgraph propagation method is that it can learn the im-
portance of each relationship type within the domain, thus
providing us with an interpretable model. This is in contrast
with the learning to rank model which learns more generic
patterns such as short paths are more important than long
paths. One way to interpret this propagation model is by
looking at the learned weights of each relationship type.

Table VI shows the weights of the relations learned by our
propagation algorithm. We only show the top-10 relations in
the table, although there are up to 168 distinct relationship
types. We find that some of these are less important and
would not contribute much to related entity finding within the
governmental impact domain. The model manages to learn that
campaignDonor-campaignRecipient is important and it also
learns that campaign-related and transactional relations such
as lobbying, contractor, and investor are very important, and
weights these key relationship types consistenyly higher than
other, more arbitrary person-company or company-company
relationships. Similarly, key person-organization/company re-
lations such as foundingPartner and insitutionalInvestor are
considered more important than more arbitrary relations such
as isOrganizationMember, or social relations such as close-
Friends. In summary, we conclude that the propagation method
can learn to distinguish the important relation types and
weight them accordingly. This finding is important because
explainability is an increasingly important requirement in any



TABLE VI
RELATIONSHIP IMPORTANCE WITHIN THE DOMAIN.

Relation Weight

campaignDonor-campaignRecipient 16.658
campaignRecipient-campaignDonor 15.245
lobbyingClient 3.588
foundingPartner 3.241
directLobbying 2.045
donation 1.887
membership 1.765
contractor 1.622
institutionalInvestor 1.267
client 1.25

ranking scenario. Although the learning to rank method obtains
better performance compared to subgraph propagation, it can
only produce a generic explanation while the subgraph propa-
gation method can estimate the relatedness probability of each
intermediate nodes, providing more interpretable explanations.

VII. CONCLUSION

We have studied the task of domain-specific related entity on
highly-heterogeneous graphs and we propose two novel graph-
based methods: learning to rank and subgraph propagation. In
our learning to rank method, we extract global characteristics
of the subgraph connecting query and related entities and
learn a model to rank the candidate entities. In the subgraph
propagation method, we treat the subgraphs as a Bayesian
network, learn shared parameters of conditional probabilities
in a supervised fashion, and infer the relatedness probabilities
of candidate entities. Focusing on governmental impact as
our domain, we have experimented with a publicly available
knowledge graph. Our experiments show that our proposed
methods achieve a good performance, outperforming a super-
vised baseline method based on graph proximity. In addition,
we find that the subgraph propagation method performs better
on queries with balanced subgraph and that it is able to provide
natural explanations.

For future work, we are interested in exploring several
directions. First, we are currently only using edge features
in our subgraph propagation model. Our approach is generic
and can be extended to include query, source, and target node
features. Second, we would like to experiment with training
the model on pseudo-labeled data derived from observed entity
associations. Finally, we would like to generate explanations
that are more accessible for end users, as in [5].
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