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Abstract The Virtual Laboratory for e-Science (VL-e) project serves as a backdrop
for the ideas described in this chapter. VL-e is a project with academic and indus-
trial partners where e-science has been applied to several domains of scientific
research. Adaptive Information Disclosure (AID), a subprogram within VL-e, is
a multi-disciplinary group that concentrates expertise in information extraction,
machine learning, and Semantic Web – a powerful combination of technologies
that can be used to extract and store knowledge in a Semantic Web framework. In
this chapter, the authors explain what “semantic disclosure” means and how it is
essential to knowledge sharing in e-Science. The authors describe several Semantic
Web applications and how they were built using components of the AIDA Toolkit
(AID Application Toolkit). The lessons learned and the future of e-Science are also
discussed.

2.1 Introduction

2.1.1 Semantic Disclosure

Knowledge discovery lies at the heart of scientific endeavor. The discovery, stor-
age, and maintenance of knowledge form the foundation of scientific progress.
Consequently, if we define e-Science as “enhanced Science,” then it is essen-
tial that e-Science should enhance knowledge discovery and re-use. Ultimately,
e-Science is about discovering and sharing knowledge in the form of experimen-
tal data, theory-rich vocabularies, and re-usable services that are meaningful to the
working scientist. Furthermore, the e-Scientist should be able to work with user
interfaces that tap into knowledge repositories to provide familiar terminologies and
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associations from the domain of inquiry, unencumbered by data schemas, format
conversion, or quirky user interfaces. For many scientists, there is the sense that if
we could somehow work with conceptual icons and the terms that we are already
using to think about a problem, we could more easily manipulate our ideas with the
logic and rules of our own definition.

As steadily more organizations build data and knowledge repositories, there is
a growing interest in information extraction and knowledge capture technologies.
In order to make knowledge discovery possible, we must be able to access and
harness existing knowledge. There are vast amounts of knowledge that are digitally
available in both publications and on the Web. However, most knowledge is not
available in a machine-readable form. The process of knowledge extraction, i.e.,
text mining from literature can provide us with knowledge distilled from scientific
discourse. The same principle can be applied to text documents associated with
a given type of data, where the knowledge extracted from the associated texts is
used as a semantic annotation of the associated data resource. Whether performed
manually or accomplished with the method that we’ve just described, the result is
semantic disclosure, where meaning about a thing (i.e., resource) is disclosed in a
machine-readable statement about it. The mined knowledge and associated data can
then be reasoned about by new computational experiments to create new hypotheses
and knowledge.

2.1.2 The Semantic Web

The semantic stack of the World Wide Web Consortium (W3C) was created in order
to provide machine readable and interoperable knowledge exchange. The “semantic
stack” is built on a set of standards that handle progressively more specific require-
ments. At the base is eXtended Markup Language (XML), which has provided a
basis for data exchange by providing the representation, schema, and syntax of
XML. On top of XML [1], the Resource Description Framework (RDF) provides a
way to express statements in “triples” of “subject predicate object.”1 When the sub-
ject of one RDF statement unifies with the object of another, the statements connect
together to form a graph or “web.” The SPARQL Query Language for RDF, a 2008
W3C recommendation, enables query of the RDF graph to look for graph patterns.
The modeling language RDF-Schema (RDF-S) provides a basis for hierarchies and
subsumption reasoning (“dog isA mammal” and “mammal isA animal” implies
“dog isA animal”). The Web Ontology Language (OWL) extends the basic class
definitions of RDF to enable reasoning and modeling using description logic. A rule
layer tops the semantic stack with the Rule Interchange Format (RIF). Although the
semantic stack cannot handle all forms of knowledge, it provides a practical basis for

1In the case of semantic disclosure, the subject could identify a data or service resource in order
to disclose something about it, such as its dc:creator (“dc” from the Dublin Core standard, see
http://dublincore.org/documents/dces/).



2 Semantic Disclosure in an e-Science Environment 31

interoperable storage, retrieval, and exchange of knowledge. This basis is supported
by a variety of implementations, many of them freely available and open source.
Additional W3C standards related to RDF are also available, including RDFa for
embedding RDF in web pages and Friend of a Friend (FOAF) for social networks.

The Simple Knowledge Organization System (SKOS) for vocabularies makes it
possible to relate concepts as “broader” or “narrower” in a way that is intuitive and
useful for structured vocabularies. One of the most useful aspects of SKOS is that
it enables forward chaining across relations skos:broader and skos:narrower for the
induction of hierarchies without the requirements of the more strict logic of OWL.
Modeling such relations with OWL properties can result in “ontological overcom-
mitment,” for example, where an instance that is assigned a class unintentionally
inherits inaccurate properties. The more vague semantics of SKOS can be conve-
nient for modeling “associations” or relations that are not only as well defined as in
OWL or RDF-S (or not defined at all yet) but also appropriate for modelling-type
hierarchies. We will discuss a few applications of SKOS in the remainder of this
chapter.

A common misconception about the Semantic Web is that all knowledge must be
first represented in a large ontology and that some sort of large knowledge network
on the scale of the Web must exist before anyone can reap the benefits. However,
Semantic Web technologies and tools are already being used today to effectively
manage and exchange knowledge without requiring practitioners to develop an
entire software infrastructure beforehand. As steadily more people follow Linked
Open Data principles2 and learn how to apply the semantic stack, more data is
becoming available as interlinked RDF and a Semantic Web is gradually emerging.
An excellent introduction to Semantic Web can also be found in the book Semantic
Web for the Working Ontologist: Effective Modeling in RDFS and OWL [2].

2.1.3 Making Sense of the Digital Deluge

Many see biomedical science, with its wide spectrum of disciplines and correspond-
ing variety of data, as the ideal proving ground for Semantic Web. Indeed, biologists
seem keen to apply the new technologies being developed in the context of e-Science
[3]. Understanding the human body, with its many layers of interwoven dynamic
molecular systems that interact on subcellular, cellular, tissue, and organ levels may
well be one of the most formidable challenges left to science. While research in
the life sciences has provided us with additional knowledge about many biologi-
cal phenomena, many of the mechanisms that are most essential to understanding
disease remain mysteries. As an example, the gene for Huntington’s Disease was
the first genetic disease mapped to a chromosome with DNA polymorphisms in
1983 and isolated in 1993, yet the actual causal chain behind the progression from
gene mutation to neurodegeneration is still unknown. Starting in 1991, the Human

2http://linkeddata.org/
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Genome Project (HGP) sequenced the entire human genome, providing an initial
reference sequence of human DNA in 2001. In 1993, around the time the HGP was
getting started, the Web began its rapid expansion with the release of the Mosaic
Web Browser. Public databases such as the GDB Human Genome Database soon
became available on the Web, setting the stage for a new era of data sharing, public
data curation, code sharing, bioinformatics, and computational biology. The journal
Nucleic Acids Research now tracks more than 1,000 publicly accessible molecular
biology databases [4].

2.1.4 Data Integration

A logical approach to such an abundance and variety of data is to combine data from
several adjacent areas of research and look for patterns in the resulting aggregation.
However, researchers hoping that the assembly of the new genome-scale data being
amassed would bring new insight have experienced firsthand that the data integra-
tion of heterogeneous data is a non-trivial exercise and that scaling up only adds to
the problem. Large data archiving projects have experienced similar problems, with
researchers struggling to create the right data design and interface in order to avoid
creating yet another “massive data graveyard.”3 Translational medicine, an effort to
couple the results of fundamental life science research with clinical applications, has
become a visible goal of large organizations such as the National Institute of Health
(NIH) in the United States. The integration of data from “bench to bedside” (i.e.,
data from wet laboratory research domain to clinical domain called translational
medicine) is a key socio-economic issue for the health care and pharmaceutical
industries because it makes maximal use of data across multiple disciplines and
enables direct knowledge sharing between disciplines. In order to reach across the
boundaries of several disciplines, from life science to drug discovery and virtual
screening of compounds, and from drug design to clinical treatment, translational
medicine will require the bridging of many terminologies and a strong framework
for data integration as its foundation.

2.1.5 W3C Semantic Web for Health Care and Life Sciences
Interest Group

Semantic Web offers the means to perform data integration. Indeed, the W3C
Semantic Web for Health Care and Life Sciences Interest Group4 (HCLS IG)
proposes that the necessary foundation for translational medicine goals could be
provided by a set of practices that make use of W3C Semantic Web standards
[5]. The HCLS IG got its start in 2004, when the W3C Workshop on Semantic

3David Shotton, University of Oxford.
4http://www.w3.org/2001/sw/hcls/
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Web for Life Sciences5 brought a large community of interested parties with 115
participants, resulting in a charter for the HCLS IG in early 2005. Many workshop
participants were already performing pioneering research related to Semantic Web
for HCLS and banded together in task forces to create technology demonstrations
and document them. The HCLS IG was rechartered in 2008 for an additional 3 years
to continue its mission to develop, advocate for, and support the use of Semantic
Web technologies for biological science, translational medicine, and health care.
The group has approximately 100 official participants at the time of writing, with a
wide range of participation from industry and academia.

Within the “BioRDF” task force of the HCLS IG, a demonstration of data inte-
gration using Semantic Web was built and first shown at a WWW conference in
Banff in 2007. The demonstration successfully answered a scientific question about
Alzheimer’s disease to show the value of being able to query across the data of 15
public databases from the Web. The data was first aggregated into an RDF repos-
itory with care to choose an OWL design that was in line with OBO Foundry
Methodology. Many researchers contributed significantly to this effort as can be
seen from the list of Contributors and Acknowledgements in the HCLS Interest
Group Note [6]. Additional work also demonstrated the extension of the knowledge
base with SenseLab data [7]. The resulting knowledge base has reached production
level in the Neurocommons [8] and continues to be developed by the BioRDF task
force, with instances running at DERI Galway and at Free University Berlin.

2.1.6 Semantic Architecture

An e-Science environment brings with it an expanded set of resources and possibili-
ties. The familiar hardware-based set of resources known to system and middleware
programmers such as CPU, memory, network bandwidth, input and output devices,
and disk space are augmented by “soft” resources such as data, knowledge, and
services. In both grid and web environments, service-oriented architecture (SOA)
supplies the advantage of data and software components that are readily available
on the network for spontaneous incorporation into applications. In fact, the sheer
abundance of shared heterogeneous resources can become an impediment to use
and the complex tooling necessary to deploy them tends to hinder the uninitiated
developer. For an end user, the resources of interest could be things as diverse as
journal articles, image data, mass spectrometry data, R scripts, services, workflows,
and spreadsheets. How can the user discover and select the resources that are most
appropriate to the task at hand? Many factors conflate to make a complex prob-
lem of matching requirements, preferences, and policies with the resources at hand.
The resource discovery problem is present at many system levels. At the application
level, users must discover the knowledge resources (e.g., vocabularies), applications,
and parameters that are relevant to their particular task, in their particular application

5http://www.w3.org/2004/07/swls-ws.html
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domain. At the application development and middleware level, developers must
discover services and data, preferably in a way that can be automated, in order to
dynamically adjust for variable resource availability and access. In fact, the prob-
lem of data and service discovery is common to many computing environments, not
only grid but also the Web and large data repositories of many sorts. An e-Science
scenario could involve resources from all of the above environments but the chal-
lenge remains the same: to manage heterogeneous resources from a single user
interface.

2.1.7 The Virtual Laboratory for e-Science Project

The Virtual Laboratory for e-Science6 (VL-e) is a project with academic and indus-
trial partners where e-science has been applied to several domains of scientific
research. Adaptive Information Disclosure7 (AID), a subprogram within VL-e, is
a multi-disciplinary group that concentrates expertise in information extraction,
machine learning, and Semantic Web – a powerful combination of technologies
that can be used to extract and store knowledge in a Semantic Web framework that
enables effective retrieval via both keyword and semantic search. In order to sup-
port metadata and knowledge management, AID has created a set of web services
as generic components that support the building of applications that are customized
to a particular domain. The web services and the applications built around them
comprise the AIDA Toolkit (AID Application Toolkit). The AIDA Toolkit and its
applications have been developed in cooperation with project partners from sev-
eral application domains and address a variety of use cases. The AIDA Toolkit has
been applied to use cases in bioinformatics, medical imaging, and food informatics
during the first 4 years of the VL-e project.

Several AIDA applications have been created that can be executed from four dif-
ferent interfaces: Taverna (workflows), a Taverna plugin, a web interface, and a Java
application for accessing grid resources called the VBrowser. The AIDA Toolkit
and its applications have been developed in cooperation with project partners from
several application domains and address a variety of use cases. In the remaining
sections, we will describe our experiences and the lessons learned while designing,
building, and applying the AIDA Toolkit to use cases in bioinformatics, medical
imaging, and food informatics during the first 4 years of the VL-e project. We
will describe how we created a workflow for hypothesis support in biology through
information extraction and how this leads to issues in computational experimenta-
tion such as the choice of knowledge representation that enables knowledge re-use
and knowledge provenance, as well as the need to support semantic types in work-
flows. We will also discuss the quest for food terminologies that would be useful to
our Food Informatics partners and how this finally led to a Web browser interface

6http://www.vl-e.nl
7http://adaptivedisclosure.org/
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with access to customized (Lucene) indexes and multiple terminologies, among
them a SKOS translation of a food ontology that was specially developed by the
Food Informatics Consortium. The same combination of customizable indexes with
structured vocabularies for search has also been applied in a Java application that
provides access to grid resources, paving the way to perform semantic retrieval and
annotation of grid resources. This Java application can be used by medical imag-
ing researchers to manage image data that is stored and transported on the grid.
We also describe how we extended it to semantically annotate and retrieve medical
images.

2.2 The AIDA Toolkit

For the purpose of knowledge management, we would like to perform knowledge
capture. In the context of a laboratory, knowledge capture can be regarded as the
process of collecting and managing related knowledge resources, especially those
related to an experiment. In this case, knowledge capture can be directly compared
to resource management, where resource aggregation requires a way to associate
disparate resource types and the creation of intuitive methods for retrieval. In a lab-
oratory, the resource types can include various types of raw data, such as image data,
as well as ontologies and vocabularies for annotation of those resources. In contrast,
in a knowledge base, the emphasis is more on the collection of facts and rules than
that of data, although links to the evidence on which the knowledge is based are gen-
erally desired. Of course, this practical distinction between knowledge capture in a
laboratory and a knowledge base should eventually give way to a complete chain of
evidence from data and data provenance to distilled fact.

In order to build and maintain a knowledge base, a knowledge engineer needs
methods to extract, represent, and manipulate knowledge resources such as facts
and rules. Ideally, round-trip knowledge engineering would be possible, where facts
in the knowledge base could be directly extracted from the data, and knowledge
base maintenance would consist of updating the evidence with new data in order to
generate any new facts that would follow from it. The set of web services that we
describe here are components of AIDA in a service-oriented architecture that cover
the basic functionality necessary to create a knowledge management application.
In particular, a user can combine them in a flexible way with other web services
providing search, extraction, and annotation functionality.

The AIDA Toolkit is directed at groups of knowledge workers that cooperatively
search, annotate, interpret, and enrich large collections of heterogeneous documents
from diverse locations. It is a generic set of components that can perform a variety
of tasks such as learn new pattern recognition models, perform specialized search
on resource collections, and store knowledge in a repository. W3C standards are
used to make data accessible and manageable with Semantic Web technologies
such as OWL, RDF(S), and SKOS. AIDA is also based on Lucene and Sesame.
Most components are available as web services and are open source under an
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Apache license. AIDA is composed of three main modules: Storage, Learning, and
Search.

2.2.1 Storage – The Metadata Storage Module

AIDA includes components for the storage and processing of ontologies, vocabular-
ies, and other structured metadata in the Storage module (see Annotation, Storage,
and Ontology editing in Fig. 2.1). The main component is RepositoryWS, a ser-
vice wrapper for Sesame8 – an open source framework for storage, inferencing,
and querying of RDF data on which most of this module’s implementation is based
[9]. ThesaurusRepositoryWS is an extension of RepositoryWS that provides con-
venient access methods for SKOS thesauri. The Sesame RDF repository offers
an HTTP interface and a Java API. In order to be able to integrate Sesame into
workflows we created a SOAP service that gives access to the Sesame Java API.
We accommodate for extensions to other RDF repositories, such as the HP Jena,
Virtuoso, Allegrograph repositories, or future versions of Sesame, by implementing
the Factory design pattern. This pattern will allow parallel implementations of the
Repository service to coexist.

Fig. 2.1 AIDA components can be applied in a variety of activities

8Sesame and related RDF software is available from http://openrdf.org
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RepositoryWS creates access to operations that enable the manipulation of an
RDF repository, but does not contain any specific reasoning facilities for RDF-based
knowledge representation languages such as OWL or FOAF. In order to support sim-
plified access to domain vocabularies, we implemented a set of convenience meth-
ods for SKOS on top of RepositoryWS called ThesaurusRepositoryWS. SKOS is
an RDF-based language for the representation of thesauri. ThesaurusRepositoryWS
contains operations that enable querying for terms that represent a concept, their
synonyms, broader, narrower, and related concepts, and mappings to concepts in
other thesauri. Currently, the most common use of the thesaurus services is for
browsing and searching vocabularies that have been stored in the repository. By
starting at the top concepts (i.e., the “broadest concepts”) of a vocabulary and pro-
gressively showing “narrower” concepts, an interactive hierarchical view of the
vocabulary is provided in web browsers and the VBrowser application. Two exam-
ple web service clients that make use of thesaurus operations have also been made:
ThesaurusSearch for matching strings to concepts (i.e., searching for concepts in a
thesaurus) and ThesaurusBrowser for looking up related concepts (i.e., navigating a
thesaurus).

Most RDF manipulation will occur within workflows or applications that
access RepositoryWS or ThesaurusRepositoryWS. Because most of our applica-
tions require user interaction, several examples of user interactions have been made
available in AIDA clients such as HTML web forms, AJAX web applications, and
a Firefox toolbar. The clients access RepositoryWS for querying RDF through the
provided Java Servlets. An RDF web page demonstrates how to access web service
clients from HTML forms. A combination of AJAX code and Java Servlets was used
to create a web-based AIDA Thesaurus Browser. The AIDA Thesaurus Browser was
used to create Recall samples for the Ontology Alignment Evaluation Initiative.9

Another example can be found in the XUL Firefox extension for the annotation of
web pages, that also access RepositoryWS through Java Servlets. Another example
annotation client, similar to the Firefox extension, was implemented as an inter-
active web page that demonstrates auto-completion on labels of RDF Classes and
Properties.

In HCLS IG work on federation of knowledge bases, we added several features
to the Storage module. Our applications can now automatically detect and con-
nect to a repository that is either Sesame, Virtuoso, or AllegroGraph. What was
originally the Thesaurus Browser in our client user interface has now become the
Repository Browser, because it can browse OWL hierarchies, as well as SKOS.
Currently, autodetection also works to determine the contents of the repository:
the SKOS specification from 2004 is attempted, followed by SKOS 2008, OWL
classes, and a number of other specialized patterns. It is also possible to supply
the entity types and relations as analogs to the SKOS:Concept and SKOS:narrower
that were originally used in the ThesaurusRepositoryWS in functionality now called
the SKOS Lense. This enables the user to customize the hierarchical browsing

9http://www.few.vu.nl/∼wrvhage/oaei2007/food.html
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to specialized types of RDF. The new functionality made it possible to easily
access a wide variety of RDF from several different repository types by sim-
ply entering a URL to the repository host and choosing a repository or named
graph.

The web services in Storage have recently been updated from the Sesame 1.2
Java API to the Sesame 2.0 Java API. Some of the new features that Sesame 2.0
provides, such as SPARQL support and named graphs, have been added to our web
service API’s and incorporated into our applications.

2.2.2 Learning – The Machine Learning Module

AIDA includes several components which enable information extraction from text
data in the Learning module. These components are referred to as learning tools. The
large community working on the information extraction task has already produced
numerous data sets and tools to work with them. To be able to use existing solutions,
we incorporated some of the models trained on the large corpora into the named
entity recognition web service NERecognizerService. These models are provided by
LingPipe [10] and range from the very general named entity recognition (detecting
locations, person, and organization names) to the specific models in the biomedical
field created to recognize protein names and other bio-entities. We specified several
options for input/output, which give us an opportunity to work with either text data
or the output of the search engine Lucene. The latter scenario is beneficial for a user
who intends first to retrieve documents of his interest and then to zoom into pieces
of text which are more specific. Output can be presented as a list of named entities
or as the annotated sentences.

However, such solutions may not comply with the users’ needs to detect named
entities in domains other than the biomedical domain. To address this problem, we
offer LearnModel web service whose aim is to produce a model given the annotated
text data. A model is based on the contextual information and use learning methods
provided by Weka [11] libraries. Once such a model is created, it can be used by
the TestModel web service to annotate texts in the same domain. Splitting the entire
process in two parts is useful from several perspectives. First of all, to annotate texts
(i.e., to use TestModel), it is not necessary for a user to apply his own model. Given
a large collection of already created models, he can compare them based on the
10-fold cross-validation performance. Another attractive option for creating models
is to use sequential models, such as conditional random fields (CRFs), which have
gained increasing popularity in the past few years. Although hidden Markov mod-
els (HMM) have often been used for labeling sequences, CRFs have an advantage
over them because of their ability to relax the independence assumption by defin-
ing a conditional probability distribution over label sequences given an observation
sequence. We used CRFs to detect named entities in several domains like acids of
various lengths in the food informatics field or protein names in the biomedical
field [12].
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Named entity recognition constitutes only one subtask in information extraction.
Relation extraction can be viewed as the logical next step after the named entity
recognition is carried out [13]. This task can be decomposed into the detection of
named entities, followed by the verification of a given relation among them. For
example, given extracted protein names, it should be possible to infer whether
there is any interaction between two proteins. This task is accomplished by the
RelationLearner web service. It uses an annotated corpus of relations to induce a
model, which consequently can be applied to the test data with already detected
named entities. The RelationLearner focuses on extraction of binary relations given
the sentential context. Its output is a list of the named entities pairs, where the given
relation holds.

The other relevant area for information extraction is detection of the collo-
cations (or n-grams in the broader sense). This functionality is provided by the
CollocationService which, given a folder with text documents, outputs the n-grams
of the desired frequency and length.

2.2.3 Search – The Information Retrieval Module

AIDA provides components which enable the indexing of text documents in various
formats, as well as the subsequent retrieval given a query, similar to popular search
engines such as Google, Yahoo!, or PubMed. The Indexer and Search components
are both built upon Apache Lucene, version 2.1.0 (http://lucene.apache.org). We
have chosen to extend this particular open source software suite for our information
retrieval components because of the long-standing history, as well as very active
user/developer community. This also means that indexes or other systems based on
Lucene can easily be integrated with AIDA.

Before any document set can be made searchable, it needs to be processed – a
procedure known as indexing. AIDA’s Indexer component takes care of the pre-
processing (the conversion, tokenization, and possibly normalization) of the text of
each document as well as the subsequent index generation. It is flexible and can be
easily configured through a configuration file. For example, different fields can be
extracted from each document type, such as title, document name, authors, or the
entire contents.

The currently supported document encodings are Microsoft Word,
Portable Document Format (PDF), MedLine, and plain text. The so-called
DocumentHandlers which handle the actual conversion of each source file are
loaded at runtime, so a handler for any other proprietary document encoding can
be created and used instantly. Because Lucene is used as a basis, there is a plethora
of options and/or languages available for stemming, tokenization, normalization,
or stop word removal which may all be set on a per-field, per-document type, or
per-index basis using the configuration file.

An index can currently be constructed using either the command-line, a SOAP
web service (with the limitation of 1 document per call), or using the Taverna
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plugin. Once an index is created it can be searched through, using the AIDA
Search component. There are three distinct ways of interacting with an index:
(i) through a SOAP web service, (ii) using AJAX tools (based on JSON objects),
or (iii) through a web interface (made using the ExtJS framework10). All methods
use and “understand” Lucene’s query syntax.

The Search SOAP web service (org.vle.aid.lucene.SearcherWS) can handle two
kinds of queries, which either search through a single (document) field (called
“search”) or through multiple fields at the same time (called “searchMFquery”).
The operation named “searchContent” is a convenience method which searches the
content field by default, thus eliminating one parameter.

The Search web interface uses the JSON search operation, called “searchJason.”
Since AJAX cannot handle SOAP messages, there is a servlet which bridges the
gap between the SOAP web service and the AJAX/JSON: org.vle.aid.client.jason.
Additionally, the web interface can display a thesaurus, loaded through AIDA’s
Storage components. This thesaurus “view” may then be used to look up terms,
synonyms, broader and narrower terms, and to perform interactive query expansion.
The generality of using JSON for searching is clearly demonstrated by the fact that
the output of this servlet can be used directly in Web 2.0 tools, such as Yahoo! Pipes
or MIT’s Exhibit.

2.3 Applications of Adaptive Information Disclosure

2.3.1 Food Informatics – Adaptive Information Disclosure
Collaboration

The collaboration between the Adaptive Information Disclosure subprogram (mid-
dleware layer) and the Food Science subprogram (application layer) began early in
the VL-e project in 2004, with regular meetings. AID had members from two univer-
sities in Amsterdam (University of Amsterdam and the Free University) and TNO,
a national research institute. The Food Science partners include both industry and
academia, with members at Wageningen UR, TI Food and Nutrition (TIFN), TNO
Quality of Life, Unilever, and Friesland Foods. Member organizations of the col-
laboration were located in diverse remote locations several hours of travel apart, so
there was substantial motivation to find ways of collaborating remotely. Of course,
the use of e-mail served to enhance initial communications, with an eventual mail-
ing list and archive devoted to the collaboration. Initial efforts focused on defining
the possibilities and applications of the machine learning, information retrieval, and
Semantic Web to Food Science.

Multi-disciplinary collaboration is a formidable challenge, even when the col-
laboration is between seemingly closely related disciplines such as the groups of
machine learning, information retrieval, and Semantic Web that are represented

10http://www.extjs.com/
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within AID. Different terminologies and approaches to problem solving and
software implementation lead to an intensive process of checking intentions and
agreements. Of course, this process is not unlike the process that every software
engineer goes through when establishing software deliverables. There is not yet
an established “mainstream” terminology for verbal discourse about knowledge,
despite ample history provided by the fields of philosophy, logic, and artificial
intelligence. So, for example, a knowledge engineer might use the word metadata
to refer to semantic as well as syntactic-type information about data, whereas a
database engineer will typically understand metadata to refer to table structure and
syntactic-type information.

It is generally difficult to match the problems and tasks of an application domain
with the capabilities provided by a new technology. Some of the difficulty is due to
the knowledge gap between middleware developers and the users from a particular
application domain (we will call it the middleware gap). The users find it difficult
to understand what the possible applications are of a piece of middleware. On the
other hand, the middleware developers do not usually know enough about the target
domain to explain the possible applications of their middleware to the problems of
that domain. The only way to bridge the middleware gap is either for the domain
experts to become experts in the middleware or for the middleware developers to
become knowledgeable about the application domain. Although no one is obligated
to bridge the gap, it must be done in order to arrive at practical solutions.

With the goal of the collaboration being to use Semantic Web to effectively dis-
close information within and between the collaborating organizations, several areas
of focus were identified. Establishing the vocabularies of a given research domain
is an essential first step in defining the terms of discourse and interaction. In many
domains, including biomedical research, a number of vocabularies had been estab-
lished before Semantic Web standards reached Recommended status but are now
available in the SKOS format. In order to take advantage of such vocabularies, we
provide centralized access to important vocabularies such as AGROVOC, NALT,
MESH, and GEMET via the AIDA thesaurus web services. However, although some
existing agricultural vocabularies were related to Food Science, the development of
structured vocabularies and ontologies specific to Food Science tasks would also be
necessary. Document collections and query logs were also identified that could serve
as potential sources for the extraction of customized vocabularies. Related work led
to a knowledge acquisition method called Rapid Ontology Construction (ROC) [14]
as well as an ontology of units and measures.11

A few areas of Food Science research serve as application use cases for the tech-
nology developed in the collaboration. One research area is centered on the study
of bitterness and the conditions (ingredients, processing, etc.) in which it arises.
Bitter perception affects the enjoyment of many foods and can even serve as an
indicator of toxicity. A database of bitter compounds was developed at Unilever
called BitterBase and web services were developed that could use information about

11http://www.atoapps.nl/foodinformatics/NewsItem.asp?NID=18
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a food component or molecule to predict its bitterness [15, 16]. The BitterBase
web services were combined in a Taverna workflow to create a demonstration. The
BitterBase web services can eventually serve as a link to knowledge about chemical
compounds in other applications. Another area of interest is Food Safety. Incidents
where toxic chemicals have entered the food-supply chain have resulted in huge
losses for the food industry and reduced consumer confidence in food. The Early
Warning System of TNO is being developed for the early detection of food safety
risks in the agro-food supply chain. Having made an ontology for food, our Food
Science partners were able to browse the OWL class hierarchy of the ontology after
we converted it to SKOS and created a web client that accessed it via the AIDA
thesaurus web services.

In interactive AIDA applications, the thesaurus services are employed to create
a hierarchical browser of the terms in a structured vocabulary, allowing the user
to navigate from the most general concepts down to the most specific with mouse
clicks. Search is also available to find concepts whose labels match string patterns.
These interactions make it possible to navigate large vocabularies, as well as the con-
cepts of a custom-built food ontology. In the case of the ontology, rdfs:subClassOf
in the ontology is mapped to skos:narrowMatch in a SKOS version of the subclass
hierarchy. Such a mapping can be used to convert OWL to SKOS using a SeRQL
Construct query.

An important application of vocabularies is query expansion and refinement. In
principle, adding a “narrower” term to a query does not change the intention of
the query. In fact, it should improve recall when we are searching for the presence
of the query terms in the documents such as is done in Lucene. SKOS allows us
to look up terms that are “narrower” than a given term programmatically, so that
we can automatically perform query expansion based on those terms when we find
our query terms in the vocabulary. For example, if our query contains the word
“bread,” and we find the narrower terms “ciabatta” and “bread crumbs,” we can
automatically add both terms to the query. Our ThesaurusRepositoryWS offers this
capability in the method “getNarrowerTerms.” This functionality was incorporated
into the research management system called Tiffany, developed in a collaboration
between TIFN and Wageningen UR and used at TIFN. The AIDA web interface
that is used in TNO’s Early Warning System incorporates narrower terms with a
Query Builder and search of a Lucene index. The narrower terms are used in a new
way: the drag of a concept to the Query Builder recursively adds all narrower terms
“below” it, representing the concept with as many terms as possible within the given
vocabulary. In the example shown in Fig. 2.2, the resulting search is for a long list
of compound names in the index.

2.3.2 A Metadata Management Approach to fMRI Data

The data from medical imaging experiments brings with it a fundamental problem:
the system in which the data is stored can make it difficult or impossible to search
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Fig. 2.2 Concept search (upper right) for “pesticides and residues” (dragged from lower right)
using SKOS relations for query expansion to search Huntington’s disease corpus (with open
Document Viewer for one result document)

for data with a particular set of attributes. However, many types of analysis require
this type of search. In medical imaging, different data sets can result from different
acquisition protocols, subjects, studies, etc. Processed data can also result from dif-
ferent image analysis workflows and typically include intermediate and final results
obtained from different algorithms or parameter settings. In this section, we describe
our approach to the management of functional Magnetic Resonance Imaging (fMRI)
data using a metadata management plugin for the VBrowser.

Functional MRI (fMRI)[17] enables the non-invasive study of brain activation
by acquiring images while the subject is performing some physical or cognitive
activity in response to controlled stimulation. The raw data consists of functional
and anatomical images, stimulus data and other signals, which are submitted to a
complex analysis workflow to compute Brain Activation Maps (BAMs). An ongoing
study at the AMC has adopted grid technology to investigate the effect of acquisition
and analysis parameters on the resulting BAMs (Virtual Lab for fMRI12). This study
generates a large amount of data that needs to be properly annotated to facilitate
retrieval for result interpretation, preparation of publications, and sharing with other
researchers.

The Virtual Resource Browser (VBrowser) is a user interface that provides
access to data resources on the grid [18]. The adoption of grid technology makes
the VBrowser an attractive interface choice because it provides support for basic
tasks such as direct data manipulation and transfer (view, delete, move, etc.) using
grid protocols such as SDSC Storage Resource Broker, gridFTP, and gLite Logical

12www.science.uva.nl/∼silvia/vlfmri
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File Catalog. Moreover, the VBrowser is extensible via plugins that implement, for
example, access to grid and web services. The VBrowser is the primary front-end to
the Virtual Lab for fMRI.

A set of web services from the AIDA Toolkit were incorporated as a VBrowser
plugin that makes it possible to annotate and retrieve grid resources with RDF.
For the fMRI application, we have created a metadata schema in OWL that is
used for annotation. This allows users and programs to annotate a given fMRI
image or experiment result with associated parameters and their values. Using
another VBrowser plugin, the user can initiate and monitor experiments that per-
form large-scale fMRI analysis on the grid. In these experiments, a parameter sweep
is performed across the values and the result obtained with each parameter combi-
nation is annotated with the corresponding values. At a later stage, users can retrieve
results based on concepts available as knowledge resources in the AIDA plugin for
VBrowser. The adoption of concepts associated with the parameters of interest in
the study enhances usability by enabling the user to express queries in more famil-
iar terms. The query results are presented as a list that can be browsed directly on
the VBrowser. Query results are stored as permanent resources that can be reused,
refined, and shared among researchers involved in related studies. Besides the abil-
ity to query, our metadata approach also allows for the addition of concepts and
terminologies from other domains, making it possible to select images based on
concepts that are more directly related to the subject of study (e.g., area of brain,
type of neuron, type of activity, disease) as well as image features and image quality
(Fig. 2.3).

Fig. 2.3 The right-hand pane shows the view of a query result. The left-hand pane shows fMRI
analysis parameters as knowledge resources that can be used in queries. Queries can be edited,
saved, and executed from the Queries folder of the AIDA resource
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2.3.3 Semantic Disclosure in Support of Biological
Experimentation

In this section we treat two related biological cases for semantic disclosure. In the
first we demonstrate the disclosure of human genome data for cases when we would
like to compare different data sets to test a biological hypothesis. In the second we
address the case of hypothesis formation itself that has become a formidable task
for biologists. In both cases Semantic Web languages and tools help to disclose
data and knowledge for use in computational experiments.

2.3.3.1 Application Case 1: Semantic Disclosure of Human
Genome Data

Over the last decades it has become increasingly clear that the activity of one gene
is regulated within the context of large networks of activities in the cell, including
the activities of many other genes. Instead of investigating genes one by one, we are
now able to perform genome-wide studies as a result of the Human Genome Project
and many of its followers that provided whole genome sequences and genome-
associated data such as gene expression profiles or binding locations of various
DNA-binding proteins. Typically, data is stored by a data provider in a relational
database and users access this data either by downloading it from the provider’s
web site or by interacting with the provider’s web user interface. A typical example
that we will use is the UCSC genome browser ([19]; http://genome.ucsc.edu), one
of the largest resources of genome data. One way to analyse this data is by com-
paring selections of data through the visual interface of the provider. The USCS
genome browser shows genome data as stacked “tracks,” where a track could be a
gene expression profile along a chromosome. This type of “visual integration” is of
course no longer appropriate when we want to perform a more complicated analysis
of several data sets, especially if we want to be able to repeat and rigorously evaluate
the analysis. That requires a computational approach. The traditional approach is to
download the data sets to a local database and query the tables locally through SQL
queries or via specific scripts. In most of these cases, the relational models used by
either the provider or the user are knowledge meager. For instance, UCSC tables
typically consist of rows of at least four columns, one for the chromosome number,
one for a start position on the chromosome, one for an end position, and one for a
value. Any meaning beyond the name of the columns is not directly linked with the
data. If we want to find out more about what the data means, its biological context
or how it was created and by whom, we will have to follow the hyperlinks on the
UCSC web site and read the descriptions and the papers that the web pages refer to.
Consequently, knowledge that is relevant for a particular data integration experiment
is known by the researcher, but not by the computer. We will not be able to use it
directly for computational data integration. In this section we show how we can link
data to one’s own semantic model and how we can use this to achieve semantic data
integration. We demonstrate how this allows us to address different data sets through
our own concepts and terms. In other words, we disclose the semantics for our data
integration experiments.
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Integrating Data for a Specific Hypothesis: DNA-Binding Sites of Transcription
Factors and Histones

An intrinsic aspect of our approach is the focus on specific hypotheses within a bio-
logical research context. Within the broader context of investigating the relationship
between how DNA is structured in the cell and transcriptional activity of genes, the
question of how histone-binding sites relate to transcription factor-binding sites is of
interest (Fig. 2.4). Histones are specific types of proteins that bind DNA and as such
are central to packaging long DNA molecules in the nucleus of a cell. They undergo
specific chemical modifications that influence their position and binding affinity for
DNA, which can have an effect on transcriptional activity. “Transcription factors”
are also proteins that can bind DNA, but they typically influence gene expression
directly by binding specific sequences near specific genes. Many of these sequences
have been identified and localized on human DNA. The interplay between histones
and transcription factors is of interest and therefore we would like to be able to
query DNA positions of both types of proteins. As mentioned above, we can find
the appropriate data in the UCSC genome browser; the ENCODE project provided
data for histone-binding tracks and transcription factor-binding tracks [20]. We can
view these tracks together for visual inspection, but for any kind of genome-wide
analysis this does not suffice. Below we show how we enable ourselves to perform
these studies computationally by providing access to these data sets via our own
semantic model. The model contains the biological concepts and relationships that
we consider relevant for our biological hypothesis, where we assume a correlation
exists between the binding of specific modified histones and specific transcription
factors (Fig. 2.4).

Fig. 2.4 Cartoon model representing a biological hypothesis about the relationship between
positions of histones and transcription factors
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“myModel” for Experimental Scientists

An important aspect of experiment biology that we would like to take into account
is that disagreement among peers is a key factor for scientific progress. Ontologies
often aspire to capture common agreement, but semantic models can also be used
to capture the view of an individual scientist or research group. Taking this into
account, we can follow these steps to integrate data:

1. Create or extend “myModel”.
2. Semantic disclosure: link data sets to myModel (Fig. 2.5).
3. Perform integrative analyses using elements from myModel.
4. For new experiments return to Step 1.

Fig. 2.5 Principle of semantic data integration. The rectangles represent classes in our OWL
model: histone classes on the left and transcription factor classes on the right. The bottom two
rectangles refer to data items from two different datasets (represented here as OWL instances).
The histone model and transcription factor model are linked by biological properties. Therefore,
linking data about histones and data about transcription factors to this model creates a biologically
meaningful link between the two data sets

In some cases it may be worthwhile to use existing (de facto) standard controlled
vocabularies such as the Gene Ontology, but here we follow the scenario where
we require a personal model and the ability to make full use of OWL modeling
possibilities. At a later stage we can map terms from more comprehensive ontologies
to our purpose-built model, if needed. Initially, myModel need not be larger than the
next biological analysis requires. We can exploit the extendibility of OWL for each
new experiment.

Technical: From Their Data to my Model

Once we have created a semantic model in OWL, how do we link it to the data sets
that we wish to query (step 2 in the previous paragraph)? In our example case we
have tables of chromosomal binding locations of histones and transcription factors.
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We also have the relational schema for these tables from UCSC. However, for
linking with our OWL model we require data to be available in RDF or at least have
an RDF interface. If the provider does not provide this, then one possible procedure
is as follows:

1. Identify the data sets required for the experiment
2. Convert the provider’s table schemas or column headers into a RDF Schema

(theirDataModel).
3. Convert the data to RDF by linking the values in the data sets to the concepts in

theirDataModel
4. Create semantic links between theirDataModel and myModel.

We expect that increasingly more providers will follow the example of UniProt
(the main protein data provider) and provide a RDF interface to their data. This
would allow us to skip steps 2 and 3. Otherwise, a conversion or some kind of map-
ping to RDF is inevitable [21–26]. An ideal situation would be if data producers (the
wet laboratories), data providers, and data users would each provide their semantic
models and their relations to the data (Fig. 2.6).

It is generally advisable to create models for representing the data (preserving
the data supplier’s naming scheme) and models to represent biological knowledge,
with an explicit mapping to link them. We could have imported the raw data directly
into myModel, but this would be less flexible and less robust. For instance, changes
to our biological models could require an entire new conversion process for any

Fig. 2.6 Principle of semantic disclosure in an ideal world. All parties involved provide a semantic
model conform their role with respect to the data. Data integration is achieved by aligning semantic
models linked to different data sets
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data that is affected, whereas we only need to change the mapping in the case of
separated models.

Analyzing Semantically Integrated Data

By semantically disclosing data we achieve a situation where we can address sepa-
rate data sets via biological concepts and relations in our own model. We conclude
by an example query (in “pseudo-SeRQL”) that retrieves those regions of DNA
where both histones and transcription factors bind (see [22–24] for other examples).
The “domain of comparison” in this experiment is “ChromosomeRegion.” Note that
the query does not need to contain direct references to the UCSC data sets.

SELECT histone, transcriptionfactor, chrom1, tStart1, tEnd1

FROM {histone_region} myModel:Chromosome_identifier {chrom1};

myModel:hasStartLocation {tStart1};

myModel:hasEndLocation {tEnd1};

myModelExperiment:hasMeasurementValue {score1},

{histone} myModel:bindsDNAregion {histone_region};

rdfs:type {myModel:Histone} rdfs:type {owl:Class},

{tf_region} myModel:Chromosome_identifier {chrom2};

myModel:hasStartLocation {tStart2};

myModel:hasEndLocation {tEnd2};

myModelExperiment:hasMeasurementValue {score2},

{transcriptionfactor} myModel:bindsDNAregion {tf_region};

rdfs:type {myModel:TranscriptionFactor} rdfs:type

{owl:Class},

WHERE chrom1 = chrom2 AND (tStart1 <= tEnd2 AND tEnd1 >=
tStart2)

The above query is sometimes called a Stand-off Join or Interval Join, where the
boundaries of two intervals are compared in order to see if there is overlap. This
join is frequently necessary when scanning for voice annotations (e.g., reviewer’s
comments) over a film in a multimedia database. We note that this type of query
is challenging for any non-optimized database and certainly also for the seman-
tic repositories we tested some years ago [25]. Performance was generally very
poor for all the databases that we tried, including relational databases. However, the
XML database MonetDB [27] which is optimized for precisely this type of stand-
off join performed better by orders of magnitude. We conclude that considerable
performance gains are to be expected considering that semantic repositories are still
immature in this respect.

2.3.3.2 Application Case 2: Semantic Disclosure of Biological Knowledge
Trapped in Literature

A common way to study intracellular mechanisms in biology is via cartoon models
that represent a particular hypothesis. A typical example is a cartoon that represents
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a hypothesis about the compaction of DNA, a key factor for sustained regulation
of gene expression (top left in Fig. 2.8; see also [28]). Hypotheses can contain
many different types of information: sequences, biophysical entities such as pro-
teins and lipids, 3 D structural information, biochemical reactions. They are the
basis for each experiment in the laboratory. Given that laboratory experiments are
expensive in terms of money and effort, hypothesis generation is an area of interest
for bioinformatics and e-Science. Forming a good hypothesis requires the integra-
tion of increasingly large amounts of resources. There are over a thousand public
databases with experimentally derived data available to biologists and over 17 mil-
lion biomedical publications are available via the prime knowledge resource for
most medical and molecular biologists, Entrez PubMed.13 PubMed gives access
to the National Library of Medicine’s public digital library MedLine and sev-
eral other resources. It is increasingly challenging to ensure that all potentially
relevant facts are considered while forming a hypothesis. Support for retrieving
relevant information is therefore a general requirement. This leads to the question
of how to disclose this information such that it becomes a resource for computer-
aided hypothesis generation. Preferably, this process is under the control of a
biologist as much as possible, considering that no one else has a better under-
standing of the end goal: a better biological hypothesis. This presents a problem,
because automated information extraction is generally not the area of expertise
of a biologist. In this section we show how an e-Science approach based on the
application of (AIDA) Web Services, Workflow, and Semantic Web technology
enables application scientists to exploit the expertise of scientists from various disci-
plines for building a machine readable knowledge base as a resource for hypothesis
generation.

2.3.3.3 An e-Science Approach for Extracting Knowledge from Text

In order to demonstrate our approach, we will discuss an application in which we
would like to extend a hypothesis about condensation and decondensation of chro-
matin. This is an important determinant of gene expression, because the effects can
be sustained over generations of proliferating cells. In particular we would like
to investigate putative relationships between the protein “Histone deacetylase 1”
(HDAC1), involved in condensation, and other proteins. A traditional scenario
would be to query PubMed and browse through the documents it retrieves (over 300
for the query “HDAC1 and Chromatin”). We obtain a “feel” for what is important
and read a selection of papers for more in depth information. However, this selec-
tion would probably be biased. Extracting the proteins related to HDAC1 without
human bias would be at least a highly laborious task. We also have to consider that
subsequent experiments based on alternative hypotheses will require new searches
that preferably extend our previously obtained information. Therefore, we would
like to address this problem computationally.

13http://www.ncbi.nlm.nih.gov/pubmed/
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Our objectives are to

1. Extract specific knowledge from literature, proteins in the case of our example
2. Examine all relevant papers or at least papers selected without subjective bias
3. Store the results in a structured way such that they fit our biological hypothesis

and can be re-examined and extended
4. Enable biologists or bioinformaticians to design their own knowledge extraction

“experiments”

In line with experimental science, we regard the whole knowledge extraction pro-
cedure as a “computational experiment”, analogous to a wet laboratory experiment.
Such an experiment requires an insightful and re-executable design of which the
results are structured enough to allow us to retrace evidence. In the wet laboratory
analogy we would use a laboratory journal for the latter.

We can achieve objectives 1–3 by implementing a basic text mining procedure
[2, 3] as follows:

(1) Retrieve appropriate documents from Medline (information retrieval)
(2) Extract protein names from their abstracts (information extraction)
(3) Store the results for later inspection. The results have to be linked to our hypo-

thetical model and we need to store the evidence that led to these results.
Evidence (provenance) in this case is, for instance, the documents from which
protein–protein relationships were derived and the computational resources that
were used.

Taking another look at these basic steps we see the desire for a multidisciplinary
approach. Step 1 is one of information retrieval, step 2 can be done using machine
learning techniques, and for step 3 Semantic Web formats and tools can be used.
Each of these steps relates to a distinct scientific discipline. Instead of one bioinfor-
matician reinventing many wheels, an e-Science approach leverages expertise from
disparate fields for an application. We achieve this when scientists in these fields
produce Web Services as part of their activities and make them publicly available.
We call this “collaboration by Web Services.” In our case, PhD students in three
research groups produced the Web Services and infrastructure that we need for our
application (see Section 2.2).

Making use of a service-oriented approach also allows us to meet objective 4.
AIDA Web Services and others can be strung together with a tool such as Taverna14

[29] to form an executable workflow that performs the knowledge extraction proce-
dure (Fig. 2.7). The workflow reflects the basic steps of the text mining procedure
and its design can be stored and reused. For instance, we store our workflows on
myExperiment.org,15 a “web2.0” site for computational scientists to store and share

14http://www.mygrid.org.uk/tools/taverna/
15http://www.myExperiment.org
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Query

Retrieve documents
from Medline 

Extract gene or
protein names 

Calculate
ranking scores 

Create biological
cross references 

Convert to
table (html) 

Add documents (IDs)
to semantic model 

Add proteins to
semantic model 

Add scores to
semantic model 

Add cross references
to semantic model 

Add query to
semantic model 

Extract gene or
protein interactions 

Add gene or protein
interactions to semantic model 

Fig. 2.7 Workflow for extracting proteins from literature (left) and store them in a knowledge base
(right). We added steps to provide a likelihood score, cross-references to some popular biological
databases, and tabulated results

(publish) computational artifacts such as workflows. The final step of the proce-
dure, storing results, uses the Web Ontology Language (OWL) and the Resource
Description Framework (RDF) to represent the knowledge that we want to extend
with the text mining results. The next paragraph explains the knowledge modeling
step in more detail.

Modeling for Biological Knowledge Extraction in OWL

Our general approach toward modeling hypotheses for computational experiments
is to start with a “proto-ontology” that represents a minimal amount of knowledge
appropriate to the problem at hand. In our example case the model should repre-
sent at least proteins and artifacts related to the experiment itself to enable us to
express, for instance, that a protein was discovered in a particular document from
Medline. The purpose of our workflow is to extract knowledge from text and popu-
late this model with individual knowledge instances (e.g., a particular protein). We
should consider that our observations from text mining are just pieces of text until
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we have interpreted them and converted them into a machine readable form accord-
ingly. For instance, we will interpret the term “p53” found in a particular abstract as
an instance with label “p53” of the class “Protein,” and its collocation with the term
“HDAC1” as a (putative) biological relationship with the protein labeled “HDAC1.”
Obviously, “collocation” in text does not necessarily mean collocation in the biolog-
ical sense. To prevent conflation of the biological view and observational views we
create four distinct OWL models and one to map between these models (Fig. 2.8):

Biological
model 

Text model
(observations)

Text mining
model

(methods) 

Workflow model
(implementation)

Biological
hypothesis
(cartoon) 

Entities and relations relevant for
experiment captured in OWL 

“references”

“discovered by”

“implemented by”

Fig. 2.8 Overview of models and their interrelationships. Arrows represent relationships between
instances of classes between the models. These relationships are defined in a separate mapping
model

1. Biological model The biological model is the primary model representing our
biological hypothesis. It contains classes such as “Protein,” “Interaction” and
“Biological model.” The model is not extensive, because part of our approach
is that we do not define more classes than are necessary for our experiment.
OWL allows us to extend the model later as needed by new experiments. We
follow the concept of the biologist’s cartoon model in that we do not necessarily
try to represent real entities or relationships, but hypothetical models of them.
Instances in this model are interpretations of certain observations, in our case of
text mining results. The evidence for these interpretations is important, but it is
not explicitly within the scope of this model.

2. Text model The text model contains classes such as “Document,” “term,”
and “interaction assertion.” Instances are the concrete results of the knowledge
extraction procedure. We can directly inspect documents or pieces of text, in
contrast to instances of the biological model such as proteins or DNA. Creating
an instance in the document model leads to creating an instance in the biolog-
ical model based on the assumption that if a protein name is found collocated
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with another protein name we assume that the referred-to proteins participate in
a biologically meaningful relationship.

3. Text mining model The text mining model represents the knowledge extraction
process itself. It contains classes for information retrieval, information extrac-
tion, and the text mining process as a whole. In principle, these processes
could be implemented in different ways. Therefore we created a separate model,
in our case a workflow model. These models are linked by “implementation”
relationships.

4. Workflow model The workflow model represents the computational artifacts
that are used to implement the text mining procedure. Example instances are
(references to) the AIDA Web Services and runs of these services. Following the
properties of these instances we can retrace a particular run of the workflow.

5. Mapping model While we have a clear framework for representing our biolog-
ical hypothesis, text, text mining, and workflow, we also need a way to relate the
instances in these models. Therefore we created an additional mapping model
that defines the reference properties between the models.

In summary, we have created proto-ontologies that separate the different views
associated with a text mining experiment. We can create instances in these models
and the relationships between the instances in these views (Fig. 2.9). This allows us
to trace the experimental evidence for creating the instances in the biological model.

Workflow

TextText mining

Biological Model

‘p53’
[ProteinTerm]

Named entity
recognition by CRF

[Text mining process] 

AIDA NER-CRF
Web Service

[ComputationElement] 

Decondensed chromatin

Condensed chromatin

Histone methylation at H3K9

DNA methylation

HDAC HAT

Histone
acetylation

Decondensed chromatin

Condensed chromatin

HDAC HATHDAC HAT

“references”

“discovered by”

“implemented by”

p53
[Protein]

HDAC1
[Protein] “associated with”“associated with”

Fig. 2.9 Examples of instances and their relationships between the views associated with a text
mining experiment
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In our case of text mining, evidence is modeled by the document, text mining, and
workflow models. A different type of computational experiment may require other
models to represent evidence and new mappings.

We note at this point that in our example case the distinction between proteins and
genes presents a problem. They are biologically distinct, but are typically referred
to by the same name. There are simple typographic rules to distinguish between
gene and protein names (e.g., ftsQ versus FtsQ), but these are not always adhered
to, are lost in digital copies, or are overlooked by text miners. Therefore, text mining
does not make this distinction generally. In our case, we chose to map the text min-
ing results, instances of protein (or gene) names to instances of proteins by default.
Alternatively, we could have defined a (biologically awkward) class “gene or pro-
tein” in the biological model and map protein (or gene) names in the text model to
instances of that class.

A Repository for Storing and Retrieving Biological Knowledge

For our knowledge extraction experiment, we now have a workflow and proto-
ontologies for structuring the results of the workflow. For storing this knowledge
we use Sesame, a freely available RDF repository. We can add the proto-ontologies
and let the workflow populate these ontologies with instances from the text min-
ing procedure (see right side of Fig. 2.7). One of the conveniences of this approach
is that by the relatively straightforward action of adding an instance with certain
properties, the instance becomes linked with any additional knowledge that was
previously added to the repository. For instance, when we add NF-KappaB to the
repository and its relationship with a hypothesis about HDAC1, we find that NF-
KappaB is also related to a hypothesis about nutrients and chromatin that was used
in a previous experiment. Another practical convenience in comparison to relational
databases is that referential integrity or preventing redundancy is largely handled by
Sesame’s built-in RDFS reasoner.16 With AIDA services we can query and alter the
content of a Sesame repository not only from within a workflow but also in a client
such as VBrowser, a general purpose resource browser that has been extended by an
AIDA plugin. In addition, we can manipulate semantic content by using the Sesame
workbench user interface or the Sesame API.

Finally, OWL data can be used over the Internet to create a Semantic Web,
because each node and edge of the underlying RDF are referred to by a Universal
Resources Identifier (URI). This enables exploitation of powerful features, such as
virtual integration of distributed models and data. However, to make OWL models
truly part of the Semantic Web, we have to make sure that the URIs resolve prop-
erly. A simple way to do this is to ensure that the models are also stored as OWL
files on a publicly accessible URL that corresponds to the base of the URIs used in
the semantic models, in our case http://rdf.adaptivedisclosure.org/. It is also possible

16Sesame supports RDF reasoning for RDF-Schema repositories, not for RDF repositories.
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to configure Virtuoso17 to expose repository contents to URL access in the Linked
Open Data tradition. Transparent access to the content of semantic repositories by
means of URLs is currently subject to active research and development.

Results

The result of running the workflow is a knowledge base filled with instances of bio-
logical concepts, relationships between those instances, and links to instances that
can tell us why the instances were created. The instances were classified according
to our own proto-ontologies. We can examine the results in search of unexpected
findings or we can trail the evidence for certain findings, for instance, by examining
the documents in which some protein name was found. An interesting possibility
is to explore relationships between the results of one or more computational exper-
iments that added knowledge to the knowledge base. There are a number of ways
to explore the knowledge base. We can load the models and instances in Protégé to
use its browsing and reasoning features or we can use RDF query languages such as
SeRQL and SPARQL. We can also access the models and new instances with our
own web interface or Taverna plugin (see Fig. 2.10). It is also possible to perform

Fig. 2.10 The AIDA Taverna plugin makes it possible to browse and search the results of the
workflow without leaving Taverna

17http://virtuoso.openlinksw.com/
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another computational experiment by means of a workflow using the knowledge
base. To illustrate the principle we provide three examples of RDF queries18:

1. This query retrieves instances of biological hypothesis models and their partial
representation by a user’s search query. The query tries to match “{node} edge
{node}” patterns in the RDF graph. The prefixes refer to our proto-ontologies
and standard models such as owl: and rdf:

SELECT model, label(query)
FROM {model} rdf:type {bio:BiologicalModel} rdf:type {owl:Class},
{representation} map:partially_represents {model},
{representation} meth:has_query {query}

Output:

Instance of biological model query partially representing the model

http://rdf.adaptivedisclosure.org/owl/
BioAID/myModel/Enriched-
ontology/BioAID_Instances.
owl#BioModel_HDAC1_AND_chromatin

“HDAC1 AND chromatin”

2. The following query retrieves proteins that are shared between two subsequent
runs of the workflow with different biological models (hypotheses) as input.
We consider an input query of a workflow as a (partial) representation of the
hypothesis.

SELECT label(comment), label(query1), label(query2)
FROM {protein_instance} rdf:type {bio:Protein} rdf:type {owl:Class},
{protein_instance} rdfs:comment {comment};

bio:isModelComponentOf {model1};
bio:isModelComponentOf {model2},

{representation1} map:partially_represents {model1};
meth:has_query {query1},

{representation2} map:partially_represents {model2};
meth:has_query {query2}

WHERE model1 = inst:BioModel_HDAC1_AND_chromatin AND
model1 != model2

18The examples here are a simplified version of SeRQL; for complete SeRQL examples including
namespaces, see http://www.adaptivedisclosure.org/aida/workflows/bioaid-serql-query-examples
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Output:

Protein Query for model 1 Query for model 2

“protein referred to by as
NF-kappaB and UniProt
ID: P19838”

“HDAC1 AND chromatin” “(Nutrician OR food) AND
(chromatin OR epigenetics)
AND (protein OR proteins)”

“protein referred to by as
p21 and UniProt ID:
P38936”

“HDAC1 AND chromatin” “(Nutrician OR food) AND
(chromatin OR epigenetics)
AND (protein OR proteins)”

“protein referred to by as
Bax and UniProt ID:
P97436”

“HDAC1 AND chromatin” “(Nutrician OR food) AND
(chromatin OR epigenetics)
AND (protein OR proteins)”

3. Finally, a query that retrieves a “trail to evidence” for a protein instance. It
retrieves the process by which the name of the protein was found, the service
by which the process was implemented, and its creator, the document from
MedLine, that is the input for the service and contains the discovered protein
name and the time when the service was run. In this case we depict the query as
a graph emphasizing that RDF queries are in principle graph patterns that match
patterns in the knowledge base (Fig. 2.11).

Overall, using the December 2008 version of our MedLine index the workflow
created 257 protein instances linked to our biological model of HDAC1 and chro-
matin. They were discovered through 489 protein terms found in 276 documents
and we could recover by what process, web service, and workflow these were dis-
covered, and when. The discrepancy between the number of protein instances and
protein names is because proteins are referred to by various synonyms. As our
knowledge base grows with each experiment (not necessarily text mining), we can
perform increasingly interesting queries in search of novel relations with respect
to our nascent hypothesis. We can store these queries and share them as “canned
queries”. We are curious to see which queries will turn out to be biologically most
revealing.

Semantic Data Integration by Knowledge Extraction Workflows

The text mining workflow above, although created for building a knowledge base to
support hypothesis generation, can also be seen as a data integration or data anno-
tation workflow. If we consider documents contained in MedLine as data elements,
then we have annotated these data elements by linking them to proteins and several
semantic relationships in our proto-ontologies. The semantic annotation is provided
by mining the text that is associated with the data. We can now query these data
elements via our own concepts and instances (which we may have linked to de facto
standard ontologies for extra points of reference), as we could after semantically
annotating human genome data from the UCSC genome browser (see elsewhere
in this chapter and [25, 26]). One of the advantages of combining workflow and
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Fig. 2.11 Graph representing a RDF query to retrieve the evidence for a biological instance

Output for Protein identified by “P19838”.
Protein: “Protein referred to by as NF-kappaB and UniProt ID: P19838”
Discovered by: “Named entity recognition trained by conditional random fields (CRF) on protein
names”
Implemented by: “AIDA CRF Named Entity Recognition service”
Created by: “Sophia Katrenko (University of Amsterdam)”
Input/Component container: Document with PubMed ID 1754084619

Timestamp: “2008-11-18T03:29:30+01:00”

Semantic Web technologies in this way is that we can dynamically create a seman-
tic “data warehouse” according to our own needs and wishes. This pattern could be
applied whenever data is coupled to some form of free text.

2.3.3.4 Conclusion

In this section we have explored mechanisms for semantic disclosure of human
genome data and knowledge enclosed in literature, both in the context of supporting
hypothesis-driven experimentation. In the first part of this section we could demon-
strate the principle of being able to query (experiment with) data in terms of our own
semantic model. Perhaps more importantly, it showed an elegant way to integrate
different data sets using Semantic Web formats and tools. Extracting knowledge

19http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&amp;db=PubMed&amp;list_uids=
17540846
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from literature is a more challenging task requiring expertise from different fields
of science. We showed that by using a workflow we can combine the expertise
of several scientists for disclosing information trapped in literature and created
a biological knowledge base that can be explored by semantic queries in search
of biological hypotheses. The pattern of storing (interpretations of) results from a
workflow into a knowledge base can be used repeatedly to build an increasingly
rich resource for elucidating biological phenomena and may also be applied for
automated data integration

2.4 Discussion

A number of technologies are implemented in AIDA, each with particular uses and
advantages. For example, Sesame RDF repositories enable storage and retrieval of
knowledge with Semantic Web technology, creating support for significant portions
of the semantic stack. Lucene provides document indexing and retrieval, enabling
us to search through document collections from within applications. The ability to
create a personalized index using AIDA enables customized document management
and search on personal document collections using the same interface as that used
for larger public collections such as MedLine. The machine learning techniques
that have been applied within AIDA provide application builders with entity recog-
nition for bio-entities such as proteins, as well as relation extraction (“proteinA
interacts with proteinB”) within text. The main bottleneck in training the statisti-
cal models that comprise our machine learning components is annotated training
sets. This bottleneck points to the conundrum of how to produce annotated train-
ing sets without tedious manual annotation (impractical). Ideally, annotation would
be performed automatically by employing the very same statistical model that one
would like to train. This points to a natural progression of functionality: once you
can search (for knowledge resources such as vocabulary terms), you can proceed to
annotate, and once you have annotation, you can proceed to (machine) learn. This
is where the knowledge resource tooling of AIDA can come in handy: annotators
can use AIDA to search a number of repositories for the knowledge resources that
they then use to annotate a given word or phrase. The resulting annotations could
then be used to train a statistical model, as required for this approach to machine
learning.

Although each technology is useful on its own, it is the combination of the
aforementioned technologies that make AIDA truly useful. For example, in a well-
established approach to text mining, the services that have been created from
machine learning algorithms can be used to extract information from documents
that have been retrieved from a Lucene index with information retrieval techniques
such as query expansion (i.e., adding related terms to the query that increase recall).
In a new approach to resource management, a selection of indexes (both personal-
ized and public) can be searched with terms from vocabularies and ontologies that
are made available from the RDF repository interface. This makes it possible to cre-
ate a concept-based query of a personal resource collection, in which it is possible
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to switch to other terminologies. Alternative terminologies and ontologies not only
provide possible terms for queries but also for annotation.

It is the programmatic access to term-concept mappings (in our case, we make
use of labels that are part of the RDF – more elaborate schemes are possible), as
well as the ability to create them by annotation that lies at the core of personalized
search. The ability to access vocabulary and ontological terms for both search and
annotation enables the interface to be customized to the user. When mappings from
concepts to multiple query languages have been made, a customizable user interface
will become available for the browsing, management, search, and annotation of a
wide range of data types and documents. Furthermore, the current machine learning
web services could eventually be supplemented with other entity recognizers and
types of relation extraction and even other forms of pattern recognition, including
those from the field of image processing. This would make it possible to apply the
same architecture in order to link concepts to other types of data, such as images,
through the features pertinent to that domain that allow us to classify to certain
concepts (i.e., tumor).

A few formidable challenges for the Semantic Web remain: end users would like
to pose questions without having to know special query languages or know techni-
cal specifics such as where the information can be found. Technical solutions to this
challenge exist, but will require much more work in the areas of query federation
and repository annotation. Once the foundations have been laid, questions that are
posed in the terms of (RDF) vocabularies can be translated to the form of a SPARQL
query, where the query is automatically decomposed into subqueries that are dis-
patched to the data sources that contain the relevant data, the answers are assembled
and presented to the user in a single application. Such a one-stop-shop will require
sophisticated query federation, repository annotation, and software engineering.
Some initial work in this area has been reported by the HCLS Interest Group [30].

Another important challenge for Semantic Web is to make it easier for people
to use knowledge bases. When a user has access to a knowledge base, even if she
is very knowledgeable about SPARQL, she will have to issue a SPARQL query
in order to find out what can be matched as a subject, predicate, or object in sub-
sequent queries. The process of discovering which items are available and which
properties or predicates refer to them is a tedious and error-prone excercise. An
interface that allows users to start from keywords and find the closest related terms
in the knowledge base will lower this barrier considerably.

At the core of semantic e-Science is semantic disclosure. In order to enable com-
putational experiments for biology research to be conducted in terms of concepts,
with transparent access to workflow and grid resources such as data, knowledge
models, and (web)services, we must make the disclosure of semantics and data
provenance an essential part of experimental data production. It is our hope that this
will convert databases and repositories from “data graveyards” into re-useable data
pools, adding value to the data that then serves as evidence linked to the assertions
in knowledge models.

How far are we in reaching the goals of semantic e-Science? A new era of data
sharing has quietly begun. Enough organizations have opened up their data and
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API’s, with the XML data format becoming standard practice, that data exchange
has become a trivial exercise. Service-Oriented Architectures (SOA) have also made
it possible to share expertise in the form of programs as well as their components
[31], such as the Taverna (and other) workflows that are shared on myExperiment
[32]. BioCatalogue [33] will enable the community that employs these services to
look up and report the quality and behavior of the services, as well as share infor-
mation about how to use them. However, in general, knowledge sharing is still quite
exceptional. Although it is simple enough to look up the syntactic type of a given
piece of data (i.e., Integer, Float), there is generally no provision for semantic types
(i.e., Chromosome Number, Score). This Do-It-Yourself (DIY) approach to seman-
tics means that the handling of semantics is left up to the application developer who
is building on the data and services. Until information systems provide the facilities
to supply the semantics of a given piece of data, developers will continue to code
assumptions about semantics into their programs and applications. Semantic support
is especially important for workflow systems, where computational experiments can
produce new knowledge but must store the new knowledge with labels that indicate
its origins. Without integrated support for semantics in workflow systems, individ-
ual users must be motivated and knowledgeable enough to come up with their own
ad hoc systems for disclosing metadata and knowledge from workflow components.
In this respect we look forward to integrating the semantic approaches described
in this chapter with the RDF-based provenance that is being developed for new
versions of Taverna [34]. We look further toward an e-Science environment where
semantics is just as much a fixed component as data and services, and knowledge
about data and services, can be used to distribute jobs across grid nodes and partition
data accordingly.

There are distinct benefits to collaborative research provided by the technologies
used to build the e-Science applications described in this chapter. The combina-
tion of platform independent technologies such as SOAP, WSDL, Java, and Ajax
in SOA-based applications has profoundly enhanced our ability to collaborate with
colleagues. Typical problems that require communications overhead such as obtain-
ing the latest version of code and compiling have been solved by simple web-based
access to web services. We were able to take advantage of remote collaboration via
web services in several ways. In the collaboration with Food Scientists, food vocab-
ularies could be served to all interested parties and the latest version of the web
interface that made use of those vocabularies via web services could be remotely
evaluated by partners and testers without requiring any extra steps. A synonym
server was made available to us as a web service by a partner in Erasmus University
in Rotterdam and the service was effortlessly incorporated in our text mining work-
flow. The services available from AIDA have been updated without change to the
API, allowing legacy applications to continue functioning.

How does our progress in semantic disclosure by the AIDA toolkit and others
relate to high-performance computing, such as enabled by a grid? Web services have
not yet been integrated with grid services in such a way that it is straightforward to
combine them in an application (as is now possible with web services in many pro-
grams such as Taverna, Galaxy). At the time of writing, there is an artificial division
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between grid and the Web largely due to data transport and security differences. For
example, the default data transport for web services is SOAP, a protocol that wasn’t
designed for large data volumes or high throughput. Also, there is apparently no sim-
ple way yet to proxy grid credentials in order to provide web services access to grid
services. The problem of data transport serves as an objection to web services for
bioinformatics practitioners who are already processing large data in their programs.
We expect that both the data transport and the security technical barriers to web and
grid integration will be addressed in the short term. We are already applying one
possible approach that has been implemented as a library that provides alternative
data transport protocols through proxy. This approach has allowed us to distribute
Lucene indexing over DAS20 cluster nodes, which we expect will eventually speed
up our nightly Medline indexing process and other large indexing jobs.

Despite the technical hurdles still to overcome, one of the most prominent chal-
lenges for e-Science is not of a technical nature but is related to the gaps in culture
between the many fields involved in this multidisciplinary discipline, in particu-
lar the gap between application sciences and computer science. We think that it
is important that application scientists try new developments in computer science
at an early stage, providing feedback from real-life practice while application sci-
entists can be the first to reap the benefits of a new approach. In our experience,
however, a computer scientist’s proof-of-concept is often not practically usable by
scientists from the application domain. The theory might be proven academically by
the computer scientist, but not implemented far enough to judge whether it is useful
in practice, i.e., in application to a particular domain. In our view, one of the aims of
e-Science is to overcome this gap. We believe that it is helpful to anticipate enough
software engineers to create the necessary proof-of-concept implementations during
the budgeting and planning stage of e-Science projects. We advocate their explicit
addition to e-Science projects by making the analogy to wet laboratories, where sci-
entists are typically supported by laboratory assistants who are trained at putting
theory to practice. In addition, we have experienced that many computer scientists
tend to apply the paradigm of “separation of concerns” to multidisciplinary collab-
orations, preferring to remain “domain agnostic” with the intent of providing only
generic solutions. In our experience, this is often counter-productive. Without sub-
stantial understanding of each other’s domains there is a risk that the mutual benefit
is small or even negative. In fact, it is impossible to demonstrate the benefits of a
new technology to a particular domain without carefully fitting it to an appropriate
problem or use case. However, when these social factors of e-Science are taken into
account, we are convinced that we will see some highly needed breakthroughs in,
for instance, life science and health care.
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