Uncertainty over Uncertainty: Investigating the Assumptions, Annotations, and Text Measurements of Economic Policy Uncertainty

Methods and applications are inextricably linked in science, and in particular in the domain of text-as-data. In this paper, we examine one such text-as-data application, an established economic index that measures economic policy uncertainty from keyword occurrences in news. This index, which is shown to correlate with firm investment, employment, and excess market returns, has had substantive impact in both the private sector and academia. Yet, as we revisit and extend the original authors’ annotations and text measurements we find interesting text-as-data methodological research questions:(1) Are annotator disagreements a reflection of ambiguity in language?(2) Do alternative text measurements correlate with one another and with measures of external predictive validity? We find for this application (1) some annotator disagreements of economic policy uncertainty can be attributed to ambiguity in language, and (2) switching measurements from keyword-matching to supervised machine learning classifiers results in low correlation, a concerning implication for the validity of the index.

Evaluating the Calibration of Knowledge Graph Embeddings for Trustworthy Link Prediction

Little is known about the trustworthiness of predictions made by knowledge graph embedding (KGE) models. In this paper we take initial steps toward this direction by investigating the calibration of KGE models, or the extent to which they output confidence scores that reflect the expected correctness of predicted knowledge graph triples. We first conduct an evaluation under the standard closed-world assumption (CWA), in which predicted triples not already in the knowledge graph are considered false, and show that existing calibration techniques are effective for KGE under this common but narrow assumption. Next, we introduce the more realistic but challenging open-world assumption (OWA), in which unobserved predictions are not considered true or false until ground-truth labels are obtained. Here, we show that existing calibration techniques are much less effective under the OWA than the CWA, and provide explanations for this discrepancy. Finally, to motivate the utility of calibration for KGE from a practitioner’s perspective, we conduct a unique case study of human-AI collaboration, showing that calibrated predictions can improve human performance in a knowledge graph completion task.