CIKM 2016

Document Filtering for Long-tail Entities

Filtering relevant documents with respect to entities is an essential task in the context of knowledge base construction and maintenance. It entails processing a time-ordered stream of documents that might be relevant to an entity in order to select only those that contain vital information. State-of-the-art approaches to document filtering for popular entities are entity-dependent: they rely on and are also trained on the specifics of differentiating features for each specific entity. Moreover, these approaches tend to use so-called extrinsic information such as Wikipedia page views and related entities which is typically only available only for popular head entities. Entity-dependent approaches based on such signals are therefore ill-suited as filtering methods for long-tail entities. Continue reading “Document Filtering for Long-tail Entities” »

Utilizing Knowledge Bases in Text-centric Information Retrieval (ICTIR 2016)

General-purpose knowledge bases are increasingly growing in terms of depth (content) and width (coverage). Moreover, algorithms for entity linking and entity retrieval have improved tremendously in the past years. These developments give rise to a new line of research that exploits and combines these developments for the purposes of text-centric information retrieval applications. This tutorial focuses on a) how to retrieve a set of entities for an ad-hoc query, or more broadly, assessing relevance of KB elements for the information need, b) how to annotate text with such elements, and c) how to use this information to assess the relevance of text. We discuss different kinds of information available in a knowledge graph and how to leverage each most effectively.
Continue reading “Utilizing Knowledge Bases in Text-centric Information Retrieval (ICTIR 2016)” »

WSDM

Dynamic Collective Entity Representations for Entity Ranking

Entity ranking, i.e., successfully positioning a relevant entity at the top of the ranking for a given query, is inherently difficult due to the potential mismatch between the entity’s description in a knowledge base, and the way people refer to the entity when searching for it. To counter this issue we propose a method for constructing dynamic collective entity representations. We collect entity descriptions from a variety of sources and combine them into a single entity representation by learning to weight the content from different sources that are associated with an entity for optimal retrieval effectiveness. Our method is able to add new descriptions in real time and learn the best representation as time evolves so as to capture the dynamics of how people search entities. Incorporating dynamic description sources into dynamic collective entity representations improves retrieval effectiveness by 7% over a state-of-the-art learning to rank baseline. Periodic retraining of the ranker enables higher ranking effectiveness for dynamic collective entity representations.

  • [PDF] D. Graus, M. Tsagkias, W. Weerkamp, E. Meij, and M. de Rijke, “Dynamic collective entity representations for entity ranking,” in Proceedings of the ninth acm international conference on web search and data mining, 2016.
    [Bibtex]
    @inproceedings{WSDM:2016:Graus,
    Author = {Graus, David and Tsagkias, Manos and Weerkamp, Wouter and Meij, Edgar and de Rijke, Maarten},
    Booktitle = {Proceedings of the ninth ACM international conference on Web search and data mining},
    Date-Added = {2016-01-07 17:24:16 +0000},
    Date-Modified = {2016-01-07 17:25:55 +0000},
    Series = {WSDM 2016},
    Title = {Dynamic Collective Entity Representations for Entity Ranking},
    Year = {2016},
    Bdsk-Url-1 = {http://aclweb.org/anthology/P15-1055}}